Sprache · Stimme · Gehör 2012; 36(04): e83-e87
DOI: 10.1055/s-0032-1327633
Schwerpunktthema
© Georg Thieme Verlag KG Stuttgart · New York

Hörverarbeitung, Gehirnplastizität und Hörtherapie

Central Auditory Processing, Central Auditory Plasticity and Auditory Therapy
C. Schwemmle
1   Klinik und Poliklinik für Phoniatrie und Pädaudiologie, Medizinische Hochschule Hannover
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
13. Dezember 2012 (online)

Zusammenfassung

Um Sinneseindrücke aus der Umwelt umfassend verarbeiten zu können, reagiert unser Gehirn mit bestimmten Aktivitätsmustern. Diese Aktivitätsmuster bilden sich i.d.R. in der frühesten Kindheit aus. Allerdings ist das Gehirn auch jenseits der sog. „sensiblen Phasen“ in der Lage, auf neue Sinnesreize mit neuen Aktivitätsmustern zu reagieren. Diese Anpassung an neue Reize wird als „Plastizität“ bezeichnet. Mittlerweile gibt es eine Reihe von Messverfahren, mit denen die Aktivität des Gehirns untersucht werden kann. Mit diesen Messmethoden ist es möglich, das Phänomen der Plastizität im Gehirn zu untersuchen bzw. nachzuweisen. Auch Hörtherapien können die plastischen Veränderungen ausnutzen und dadurch die Kommunikationsbedingungen auch hörgeschädigter Patienten verbessern. Hier wird ein Überblick über die Plastizität, über Messmethoden zur Objektivierung der Gehirnaktivität und über die kortikalen Auswirkungen von Hörtherapien gegeben.

Abstract

Like all sensory systems, the auditory system is highly organised. In order to process sensations from the environment, our brain responds to certain patterns of activity. This activity pattern shape is usually developed in early childhood. It is established that the tuning of neurons in the mammalian auditory cortex can be altered in the brain beyond the so-called „sensitive periods“ also known as the concept of plasticity. Along with computers and more sophisticated signal averaging techniques, improved methods for modelling and quantifying cortical activity have been developed. In combination with measurements of auditory perception it became possible to examine physiological correlates and changes in normal and disordered perception and to propose new brain-behavioural relationships. Especially auditory therapy can also take advantage of this plasticity for improving the patient’s everyday communication. Here we present an overview of plasticity, measurement methods for objectifying brain activity and the cortical effects of auditory therapy.

Literatur

 
  • Literatur

  • 1 Tremblay K. Training related changes in the brain: evidence from human auditory-evoked potentials. Semin Hear 2007; 28: 120-132
  • 2 Caton R. The electric currents of the brain. Brit med J 1875; II: 278
  • 3 Davis H. Principles of electric response audiometry. Ann Otol Rhinol Laryngol 1976; SUPPL 28: 1-96 Review
  • 4 Maurer K, Dierks T. Atlas of Brain Mapping. Heidelberg: Springer; 1991
  • 5 Kompis M. Audiologie. Bern: Hans Huber; 2004
  • 6 Naatanen R, Picton T. The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology 1987; 24: 375-425
  • 7 Tremblay K, Kraus N, McGee T et al. Central auditory plasticity: changes in the N1-P2 complex after speech-sound training. Ear Hear 2001; 22: 79-90
  • 8 Naatanen R. The role of attention in auditory information processing as revealed by event-related potentials and other brain measures of cognitive function. Behav Brain Sci 1990; 13: 201-288
  • 9 Willott JF. Changes in frequency representation in the auditory system of mice with age-related hearing impairment. Brain Res 1984; 309: 159-162
  • 10 Kral A, Hartmann R, Tillein J et al. Hearing after congenital deafness: central auditory plasticity and sensory deprivation. Cereb Cortex 2002; 12: 797-807
  • 11 Chang EF, Merzenich MM. Environmental noise retards auditory cortical development. Science 2003; 300: 498-502
  • 12 Shepherd RK, Baxi JH, Hardie NA. Response of inferior colliculus neurons to electrical stimulation of the auditory nerve in neonatally deafened cats. J Neurophysiol 1999; 82: 1363-1380
  • 13 Stelmachowicz PG, Kopun J, Mace A et al. The perception of amplified speech by listeners with hearing loss: acoustic correlates. J Acoust Soc Am 1995; 98: 1388-1399
  • 14 Tyler RS, Summerfield AQ. Cochlear implantation: relationships with research on auditory deprivation and acclimatization. Ear Hear 1996; 17 (3 Suppl) 38s-50s
  • 15 Sweetow R, Palmer CV. Efficacy of individual auditory training in adults: a systematic review of the evidence. J Am Acad Audiol 2005; 16: 494-504
  • 16 Bakin JS, Weinberger NM. Classical conditioning induces CS specific receptive field plasticity in the auditory cortex of the guinea pig. Brain Res 1990; 536: 271-286
  • 17 Tremblay K. Beyond the ear: physiological perspectives on auditory rehabilitation. Semin Hear 2005; 26: 127-136
  • 18 Neuman AC. Central auditory system plasticity and aural rehabilitation of adults. J Rehabil Res Dev 2005; 42 (Suppl. 02) 169-186
  • 19 Tremblay KL, Kraus N. Auditory training induces asymmetrical changes in cortical neural activity. J Speech Lang Hear Res 2002; 45: 564-572
  • 20 Souza PE, Tremblay KL. New perspectives on assessing amplification effects. Trends Amplif 2006; 10: 119-143
  • 21 Tremblay KL. Central auditory plasticity: implications for auditory rehabilitation. The Hearing Journal 2003; 56: 10-17
  • 22 Kraus N, McGee T, Carrell T et al. Central auditory system plasticity associated with speech discrimination training. J Cogn Neurosci 1995; 7: 27-32
  • 23 Tremblay K, Kraus N, McGee T. The time course of auditory perceptual learning: neurophysiologic changes during speech-sound training. Neuroreport 1998; 9: 3557-3560
  • 24 Menning H, Roberts L, Pantev C. Plastic changes in the auditory cortex induced by intensive frequency discrimination training. Neuroreport 2000; 11: 817-822
  • 25 Atienza M, Cantero JL, Dominguez-Marin E. The time course of neural changes underlying auditory perceptual learning. Learn Mem 2002; 9: 138-150
  • 26 Gottselig JM, Brandeis D, Hofer-Tinguely G et al. Human central auditory plasticity associated with tone sequence learning. Learn Mem 2004; 11: 162-171
  • 27 Sheehan KA, McArthur GM, Bishop DV. Is discrimination training necessary to cause changes in the P2 auditory event-related brain potential to speech sounds?. Brain Res Cogn Brain Res 2005; 25: 547-553
  • 28 Paavilainen P, Cammann R, Alho K et al. Event-related potentials to pitch change in an auditory stimulus sequence during sleep. Electroencephalogr Clin Neurophysiol Suppl 1987; 40: 246-255
  • 29 Teismann IK, Soros P, Manemann E et al. Responsiveness to repeated speech stimuli persists in left but not right auditory cortex. Neuroreport 2004; 15: 1267-1270
  • 30 Woods DL. The component structure of the N1 wave of the human auditory evoked potential. Electroencephalogr Clin Neurophysiol Suppl 1995; 44: 102-109
  • 31 Woldorff MG, Hackley SA, Hillyard SA. The effects of channel-selective attention on the mismatch negativity wave elicited by deviant tones. Psychophysiology 1991; 28: 30-42
  • 32 Tremblay KL, Billings CJ, Friesen LM et al. Neural representation of amplified speechsounds. Ear Hear 2006; 27: 93-103
  • 33 Hayes E, Warrier C, Nicol T et al. Neural plasticity following auditory training in children with learning problems. Clin Neurophysiol 2003 114: 673-684