Planta Med 2013; 79(01): 87-91
DOI: 10.1055/s-0032-1327951
Natural Product Chemistry
Letters
Georg Thieme Verlag KG Stuttgart · New York

Chemical Constituents from the Fungus Amauroderma amoiensis and Their In Vitro Acetylcholinesterase Inhibitory Activities

Shuang Shuang Zhang
1   Food Science and Technology College, Nanjing Agricultural University, Nanjing, China
2   Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
,
Qing Yun Ma
2   Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
,
Xi Sheng Zou
3   State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
,
Hao Fu Dai
2   Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
,
Sheng Zhuo Huang
2   Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
,
Ying Luo
2   Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
,
Zhi Fang Yu
1   Food Science and Technology College, Nanjing Agricultural University, Nanjing, China
,
Huai Rong Luo
3   State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
,
You Xing Zhao
2   Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
› Author Affiliations
Further Information

Publication History

received 12 September 2012
revised 14 October 2012

accepted 21 October 2012

Publication Date:
23 November 2012 (online)

Abstract

One new compound named amauroamoienin (1), together with thirteen known compounds (214), was isolated from the EtOAc extract of Amauroderma amoiensis. The structures of these compounds were elucidated by the analysis of 1D and 2D spectroscopic data and the MS technique. The bioassays of inhibitory activities of these isolates against acetylcholinesterase were evaluated, and compounds 1, 3, and 5 exhibited acetylcholinesterase inhibitory activities.

Supporting Information

 
  • References

  • 1 Wu XL, Dai YC, Lin LH. Study on the Ganodermataceae of China I. Guizhou Sci 2004; 22: 27-34
  • 2 Wu XL, Guo JR, Liao QZ, Xie SH, Xiao M. The resources and ecological distribution of Ganodermataceae in Hainan island. Mycosystema 1998; 17: 122-129
  • 3 Paterson RRM. Ganoderma – a therapeutic fungal biofactory. Phytochemistry 2006; 67: 1985-2001
  • 4 Sliva D. Ganoderma lucidum in cancer research. Leuk Res 2006; 30: 767-768
  • 5 Stanley G, Harvey K, Slivova V, Jiang J, Sliva D. Ganoderma lucidum suppresses angiogenesis through the inhibition of secretion of VEGF and TGF- b1 from prostate cancer cells. Biochem Biophys Res Commun 2005; 330: 46-52
  • 6 Aryantha INP, Adinda A, Kusmaningati S. Occurrence of triterpenoids and polysaccharides on Ganoderma tropicum with Ganoderma lucidum as reference. Aust Mycol 2002; 20: 123-129
  • 7 Liu JQ, Wang CF, Li Y, Luo HR, Qiu MH. Isolation and bioactivity evaluation of terpenoids from the medicinal fungus Ganoderma sinense . Planta Med 2012; 78: 368-376
  • 8 Lee IS, Kim HJ, Youn UJ, Kim JP, Min BS, Jung HJ, Na MK, Hattori M, Bae KH. Effect of lanostane triterpenes from the fruiting bodies of Ganoderma lucidum on adipocyte differentiation in 3 T3-L1 cells. Planta Med 2010; 76: 1558-1563
  • 9 Oinonen P, Mettälä A, Vuorela P, Hatakka A. Screening of acetylcholinesterase inhibitors from fungal extracts. Planta Med 2006; 72: P-041
  • 10 Zhao JD, Xu LW, Zhang XQ. Taxonomic studies on the family Ganodermataceae of China II. Mycosystema 1983; 2: 159-167
  • 11 Togashi H, Mizushina Y, Takemura M. 4-Hydroxy-17-methylincisterol, an inhibitor of DNA polymerase-α activity and the growth of human cancer cells in vitro . Biochem Pharmacol 1998; 56: 583-590
  • 12 Ciminiello P, Fattoruss E, Magno S, Mangon A, Pansini M. Incisterols, a new class of highly degraded sterols from the marine sponge Dictyonella incisa . J Am Chem Soc 1990; 112: 3505-3509
  • 13 Rukachaisirikul V, Ritthiwigrom T, Pinsa A, Sawangchote P, Taylor WC. Xanthones from the stem bark of Garcinia nigrolineata . Phytochemistry 2003; 24: 1149-1156
  • 14 Westcrman PW, Gunasekera SP, Sultanbawa S, Uvais M, Kazlauskas R. Carbon-13 n.m.r. study of naturally occurring xanthones. Org Magn Reson 1977; 17: 631-636
  • 15 Wan H, Sun RQ, Wu DJ. Three sterols from Gyroporus castaneus . Nat Prod Res Dev 1999; 11: 18-20
  • 16 Keller AC, Maillard MP, Hostettmann K. Antimicrobial steroids from the fungus Fomitopsis pinicola . Phytochemistry 1996; 41: 1041-1046
  • 17 Ishikzuka T, Yaoita Y, Kikuchi M. Sterol constituents from the fruit bodies of Grifola frondosa (Fr.) S.F.Gray. Chem Pharm Bull 1997; 45: 1756-1760
  • 18 Sun Y, Tian L, Huang J, Li W, Pei YH. Cytotoxic sterols from marine-derived fungus Pennicillium sp . Nat Prod Res 2006; 20: 381-384
  • 19 Gao H, Hong K, Chen GD, Wang CX, Tang JS, Yu Y, Jiang MM, Li MM, Wang NL, Yao XS. New oxidized sterols from Aspergillus awamori and the endo-boat conformation adopted by the cyclohexene oxide system. Magn Reson Chem 2010; 48: 38-43
  • 20 Kawagishi H, Katsumi R, Sazawa T, Mizuno T, Hagiwara T, Nakamura T. Cytotoxic steroids from the mushroom Agaricus blazei . Phytochemistry 1988; 27: 2777-2779
  • 21 Yue JM, Chen SN, Lin ZW, Sun HD. Sterols from the fungus Lactarium volemus . Phytochemistry 2001; 56: 801-806
  • 22 Lai GF, Zhu XD, Luo SD, Wang YF. Chemical constituents from Elsholtzia rugulosa . Chin Tradit Herb Drugs 2008; 39: 661-664
  • 23 Liu JJ, Liu XK. Chemical constituents from edible part of Pistacia chinensis . Chin Tradit Herb Drugs 2009; 40: 186-189
  • 24 Liu ZY, Luo DQ. Chemical constituents from Trollius chinensis . Chin Tradit Herb Drugs 2010; 41: 370-373
  • 25 Kwon HC, Kim KR, Zee SD, Cho SY, Lee KR. A new indolinepeptide from Peacilomyces sp.J300. Arch Pharm Res 2004; 27: 604-609
  • 26 Ishizuka T, Yaoita Y, Kikuchi M. Sterol constituents from the fruit bodies of Grifola frondosa (Fr.) S.F. Gray. Chem Pharm Bull 1997; 45: 1756-1760
  • 27 Ellman GL, Courtney KD, Andres VJ, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961; 7: 88-95