Planta Med 2013; 79(06): 425-436
DOI: 10.1055/s-0032-1328331
Reviews
Georg Thieme Verlag KG Stuttgart · New York

Antidiabetic Attributes of Desert and Steppic Plants: A Review

Eli Harlev
1   Institute of Evolution and International Graduate Center of Evolution, University of Haifa, Mount Carmel, Haifa, Israel
,
Eviatar Nevo
1   Institute of Evolution and International Graduate Center of Evolution, University of Haifa, Mount Carmel, Haifa, Israel
,
Nitsa Mirsky
2   Department of Biology & Environment, Faculty of Natural Sciences, University of Haifa, Mount Carmel, Haifa, Israel
,
Rivka Ofir
3   Dead Sea & Arava Science Center and The Shraga Segal Department of Microbiology, Immunology & Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
› Author Affiliations
Further Information

Publication History

received 02 April 2012
revised 14 February 2013

accepted 15 February 2013

Publication Date:
28 March 2013 (online)

Abstract

The rapidly increasing incidence of diabetes mellitus is becoming a serious threat to mankindʼs health in all parts of the world. In fact, known cases reflect only part of the problem, as many diabetics, especially with type 2 diabetes, are unaware of their disease, which initially shows no definitive symptoms. Despite the great efforts invested in diabetes research, its prevalence continues to grow, while current medications do not cover all of the symptoms and complications of the disease. The present review highlights a plethora of studies focusing on the antidiabetic properties of desert and semidesert (steppic) plants, many of them being used for centuries in traditional medicine by Bedouins living in the arid zones of the Middle East and also by ethnic groups in other arid and semiarid parts of the world. The review concludes in summarizing the work done on the subject and also in pointing to the yet existing gaps in diabetes research of desert and steppic plants, and suggests directions for future exploration.

Supporting Information

 
  • References

  • 1 Danaei G, Finucane MM, Lu Y, Singh GM, Cowan MJ, Paciorek CJ, Lin JK, Farzadfar F, Khang YH, Stevens GA, Rao M, Ali MK, Riley LM, Robinson CA, Ezzati M. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet 2011; 378: 31-40
  • 2 Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 2010; 87: 4-14
  • 3 Zhang P, Zhang X, Brown J, Vistisen D, Sicree R, Shaw J, Nichols G. Global healthcare expenditure on diabetes for 2010 and 2030. Diabetes Res Clin Pract 2010; 87: 293-301
  • 4 Neelesh M, Sanjay J, Sampa M. Antidiabetic potential of medicinal plants. Acta Pol Pharm 2010; 67: 113-118
  • 5 Bhalodia YS, Sheth NR, Vaghasiya JD, Jivani NP. Hyperlipidemia enhanced oxidative stress and inflammatory. Int J Pharmacol 2010; 6: 25-30
  • 6 Onody A, Csonka C, Giricz Z, Ferdinandy P. Hyperlipidemia induced by a cholesterol-rich diet leads to enhanced peroxynitrite formation in rat hearts. Cardiovasc Pharm 2003; 58: 663-670
  • 7 Tiwari AK, Madhusudana RJ. Diabetes mellitus and multiple therapeutic approaches of phytochemicals: present status and future prospects. Curr Sci 2002; 83: 30-38
  • 8 Maxwell SRJ, Thomason S, Sandier D, Leguen C, Baxter MA, Thrope GHG, Jones AF, Barnett AH. Antioxidant status in patients with uncomplicated insulin-dependent and non-insulin-dependent diabetes mellitus. Eur J Clin Invest 1997; 27: 484-490
  • 9 Boynes JW. Role of oxidative stress in development of complication in diabetes. Diabetes 1991; 40: 405-412
  • 10 Collier A, Wilson R, Bradley H, Thomson JA. Free radical activity in type 2 diabetes. Diabetic Med 1990; 7: 27-30
  • 11 Logani MK, Davis RE. Lipid peroxidation in biologic effects and antioxidants: a review. Lipids 1979; 15: 485-493
  • 12 Montonen J, Knekt P, Jarvinen R, Reunanen A. Dietary antioxidant intake and risk of type 2 diabetes. Diabetes Care 2004; 27: 362-366
  • 13 Schroeter HC, Boyd JPE, Spencer RJ, Williams EC, Rice-Evans C. MAPK signaling in neurodegeneration: influences of flavonoids and of nitric oxide. Neurobiol Aging 2002; 23: 861-880
  • 14 Al-Mustafa AH, Al-Thunibat OY. Antioxidant activity of some Jordanian medicinal plants used traditionally for treatment of diabetes. Pakistan J Biol Sci 2008; 11: 351-358
  • 15 Tawaha K, Alali FQ, Gharaibeh M, Mohammad M, El-Elimat T. Antioxidant activity and total phenolic content of selected Jordanian plant species. Food Chem 2007; 104: 1372-1378
  • 16 Sabu MC, Kuttan R. Anti-diabetic activity of medicinal plants and its relationship with their antioxidant property. J Ethnopharmacol 2002; 81: 155-160
  • 17 Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 1996; 20: 933-956
  • 18 Valco MM, Mazur M, Rhodes CJ, Telser J. Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem 2004; 266: 37-56
  • 19 Lo HC, Wasser PS. Mushrooms for glycemic control in diabetes mellitus: history, current status, future perspectives and unsolved problems (review). Int J Med Mushrooms 2011; 13: 401-426
  • 20 Sahu P, Sharma A, Chatterjee T. Natural products with potent hypoglycemic activity. Res J Pharm Technol 2010; 3: 650-656
  • 21 Mukherjee S, Gogoi JB. Free radicals in diseases and potential role of phytoconstituents. Curr Chem Biol 2011; 5: 197-212
  • 22 Fraser D, Abu-Saad K, Abu-Shareb H. The relative importance of traditional and “modern” foods for Israeli Negev Bedouins. A population in transition. Nutr Metab Cardiovasc Dis 2001; 11: 66-69
  • 23 Abou-Rbiah Y, Weitzman S. Diabetes among Bedouins in the Negev: the transition from a rare to a highly prevalent condition. Isr Med Assoc J 2002; 4: 687-689
  • 24 Agrawal RP, Awami SC, Beniwal R, Kochar DK, Shani MS, Tuteja FC, Ghorui SK. Effect of camel milk on glycemic control, lipid profile and diabetes quality of life in type 1 diabetes: A randomised prospective controlled cross over study. Indian J Animal Sci 2003; 73: 1105-1110
  • 25 Agrawal RP, Kochar KD, Sahani MS, Tuteja FC, Ghorui SK. Hypoglycemic activity of camel milk in streptozotocin induced diabetic rats. Int J Diabetes Dev Ctries 2004; 24: 47-49
  • 26 Agrawal RP, Beniwal R, Sharma S, Kochar DK, Tuteja FC, Ghorui SK, Sahani MS. Effect of raw camel milk in type 1 diabetic patients: 1 year randomised study. J Camel Pract Res 2005; 12: 27-35
  • 27 Nofal SM, Mahmoud SS, Ramadan A, Soliman GA, Fawszy R. Anti-diabetic effect of Artemisia judaica extracts. Res J Medicine Med Sci 2009; 4: 42-48
  • 28 Liu CZ, Murch SJ, El-Demerdash M, Saxena PK. Artemisia judaica L.: micropropagation and antioxidant activity. J Biotechnol 2004; 110: 63-71
  • 29 El-Massry KF, El-Ghorab AH, Farouk A. Antioxidant activity and volatile components of Egyptian Artemisia judaica L. Food Chem 2002; 79: 331-336
  • 30 Marrif HI, Ali BH, Hassan KM. Some pharmacological studies on Artemisia herba-alba (Asso.) in rabbits and mice. J Ethnopharmacol 1995; 49: 51-55
  • 31 Twaij HA, Al-Badr AA. Hypoglycemic activity of Artemisia herba-alba . J Ethnopharmacol 1988; 24: 123-126
  • 32 Hamza N, Berke B, Cheze C, Le Garrec R, Lassalle R, Agli AN, Robinson P, Gin H, Moore N. Treatment of high fat diet induced type 2 diabetes in C57BL/6J mice by two medicinal plants used in traditional treatment of diabetes in the east of Algeria. J Ethnopharmacol 2011; 133: 931-933
  • 33 Al-Shamaony L, Al-Khazraji SM, Twaij HA. Hypoglycaemic effect of Artemisia herba alba. II. Effect of a valuable extract on some blood parameters in diabetic animals. J Ethnopharmacol 1994; 43: 167-171
  • 34 Al-Waili MSD. Treatment of diabetes mellitus by Artemisia herba-alba extract: preliminary study. Clin Exp Pharmacol Phys 1986; 13: 569-573
  • 35 Essway GS, Sobbhy HM, El-Banna HA. The hypoglycemic effect of volatile oil of some Egyptian plants. Vet Med J 1995; 43: 167-172
  • 36 Saadaoui Z, Guetat A, Tlili N, El Gazzah M, Khaldi A. Subspecific variability of Tunisian wild populations of Capparis spinosa L. J Med Plants Res 2011; 5: 4339-4348
  • 37 Yaniv Z, Dafni A, Friedman J, Palevitch D. Plants used for the treatment of diabetes in Israel. J Ethnopharmacol 1987; 19: 145-151
  • 38 Eddouks M, Lemhadri A, Michel JB. Caraway and caper: potential anti-hyperglycaemic plants in diabetic rats. J Ethnopharmacol 2004; 94: 143-148
  • 39 Lemhadri A, Eddouks M, Sulpice T, Burcelin R. Anti-hypergliceamic and anti-obesity effects of Capparis spinosa and Chamaemelum nobile aqueous extracts in HFD mice. Am J Pharmacol Toxicol 2007; 2: 106-110
  • 40 Afifi FU, Abu-Irmaileh BE, Al-Noubani RA. Comparative analysis of the essential oils of Teucrium polium L. grown in different arid & semi arid habitats in Jordan. Jordan J Pharm Sci 2009; 2: 42-52
  • 41 Palevitch D, Yaniv Z. Medicinal plants of the Holy Land. Tel Aviv, Israel: Modan; 2000
  • 42 Bahramikia S, Yazdanparast R. Phytochemistry and medicinal properties of Teucrium polium L. (Lamiaceae). Phytother Res advance online publication 17 Feb 2012
  • 43 Yazdanparast R, Esmaeili MA, Halen JA. Teucrium polium extract effects pancreatic function of Streptozotocin diabetic rats: A histopathological examination. Iranian Biomed J 2005; 9: 81-85
  • 44 Gharaibeh MN, Elayan HH, Salhab AS. Hypoglycemic effects of Teucrium polium . J Ethnopharmacol 1988; 24: 93-99
  • 45 Ardestani A, Yazdanparast R, Jamshidi S. Therapeutic effects of Teucrium polium extract on oxidative stress in pancreas of streptozotocin-Induced diabetic rats. J Med Food 2008; 11: 525-532
  • 46 Stefkov G, Kulevanova S, Miova B, Dinevska-Kjovkarovska S, Molgaard P, Jager AK, Josefsen K. Effects of Teucrium polium spp. capitatum flavonoids on the lipid and carbohydrate metabolism in rats. Pharm Biol 2011; 49: 885-892
  • 47 Glombitza KW, Mahran GH, Mirhom KG, Michel YW, Motawi TK. Hypoglycemic and antihyperglycemic effects of Zizyphus spina-christi in rats. Planta Med 1994; 60: 244-247
  • 48 Adzu B, Amos S, Wambebe C, Gamaniel K. Antinociceptive activity of Zizyphus spina-christi root bark extract. Fitoterapia 2001; 4: 344-350
  • 49 Michel CG, Nesseem DI, Ismail MF. Anti-diabetic activity and stability study of the formulated leaf extract of Zizyphus spina-christi (L.) Willd with the influence of seasonal variation. J Ethnopharmacol 2011; 133: 53-62
  • 50 Abdel-Zaher AO, Salim SY, Assaf MH, Abdel-Hady RH. Antidiabetic activity and toxicity of Zizyphus spina-christi leaves. J Ethnopharmacol 2005; 101: 129-138
  • 51 Shabana MM, Mirhom YW, Genenah AA, Aboutabl EA, Amer HA. Study into wild Egyptian plants of potential medicinal activity. Ninth communication: hypoglycaemic activity of some selected plants in normal fasting and alloxanised rats. Arch Exp Veterinarmed 1990; 44: 389-394
  • 52 Gorelick J, Kitron A, Pen S, Rozenzweig T, Madar Z. Anti-diabetic activity of Chiliadenus iphionoides . J Ethnopharmacol 2011; 137: 1245-1249
  • 53 Al-Dabbas MM, Kitahara K, Suganuma T, Hashimoto F, Tadera K. Antioxidant and α-amylase inhibitory compounds from aerial parts of Varthemia iphionoides Boiss. Biosci Biotechnol Biochem 2006; 70: 2178-2184
  • 54 Afifi FU, Saket M, Jaghabir M, Al-Eisawi D. Effect of Varthemia iphionoides on blood glucose level of normal rats and rats with streptozonic-induced diabetes mellitus. Curr Ther Res 1997; 58: 888-892
  • 55 Kasabri V, Afifi FU, Hamdan I. In vitro and in vivo acute antihyperglycemic effects of five selected indigenous plants from Jordan used in traditional medicine. J Ethnopharmacol 2011; 133: 888-896
  • 56 Algandaby MM, Alghamdi HA, Ashour OM, Abdel-Naim AB, Ghareib SA, Abdel-Sattar EA, Hajar S. Mechanisms of the antihyperglycemic activity of Retama raetam in streptozotocin-induced diabetic rats. Food Chem Toxicol 2010; 48: 2448-2453
  • 57 Maghrani M, Lemhadri A, Jouad H, Michel JB, Eddouks M. Effect of the desert plant Retama raetam on glycaemia in normal and streptozotocin-induced diabetic rats. J Ethnopharmacol 2003; 87: 21-25
  • 58 Maghrani M, Michel JB, Eddouks M. Hypoglycaemic activity of Retama raetam in rats. Phytother Res 2005; 19: 125-128
  • 59 Morsy AMA, Ahmad IA, Kamel AM. Some biomedical applications of Balanites aegyptiaca grown naturally in radioactive area, Southeastern Desert, Egypt. J Hazard Mater 2010; 178: 725-728
  • 60 Hamden K, Carreau S, Jamoussi K, Ayadi F, Garmazi F, Elfeki A. Dietary Nigella sativa and Peganum harmala oils reverses hyperglycaemia, hepatotoxicity, and metabolism in rats. Food Sci Biotechnol 2009; 18: 739-744
  • 61 Yazdanparast R, Ardestani A, Jamshidi S. Experimental diabetes treated with Achillea santolina: effect on pancreatic oxidative parameters. J Ethnopharmacol 2007; 112: 13-18
  • 62 Roy S, Sehgal R, Padhy BM, Kumar VL. Antioxidant and protective effect of latex of Calotropis procera against alloxan-induced diabetes in rats. J Ethnopharmacol 2005; 102: 470-473
  • 63 Bhaskar VH, Sumant SA. Evaluation of antihperglycemic activity of extracts of Calotropis procera (Ait.) R.Br on streptozotocin induced diabetic rats. Global J Pharmacol 2009; 3: 95-98
  • 64 El-Alfy TS, Ezzat SM, Hegazy AK, Amer AMM, Kamel GM. Isolation of biologically active constituents from Moringa peregrina (Forssk.) growing in Egypt. Pharmacogn Mag 2011; 7: 109-115
  • 65 Mehta KG, Modi R, Gupta R. “Psyllium”. Indian J Agron 1976; 21: 509-510
  • 66 Watanabe S, Aoki T. Functional powdered beverage containing fiber powder of Plantago ovata effective component. JP Patent 04036173A19920206 1992
  • 67 Hannan JMA, Ali L, Khaleque J, Akhter M, Flatt PR, Abdel-Wahab YHA. Aqueous extracts of husks of Plantago ovata reduce hyperglycaemia in type 1 and type 2 diabetes by inhibition of intestinal glucose absorption. Br J Nutr 2006; 96: 131-137
  • 68 Kambouche N, Merah B, Derdour A, Bellahouel S, Younos C, Soulimani R. Antihyperglycemic activity of β-sitoglucoside sterol isolated from the plant of Anabasis articulata (Forssk) Moq. Phytotherapie 2011; 9: 2-6
  • 69 Kambouche N, Merah B, Derdour A, Bellahouel S, Benziane MM, Younos C, Firkioui M, Bedouhene S, Soulimani R. Study of anti-diabetic effect of saponins extracted from Anabasis articulata (Forssk) Moq, a plant traditionally used in Algeria. Phytotherapie 2009; 7: 197-201
  • 70 Aharonson Z, Shani J, Sulman FG. Hypoglycaemic effect of the salt bush (Atriplex halimus), a feeding source of the sand rat (Psammomys obesus). Diabetologia 1969; 5: 379-383
  • 71 Shani J, Ahronson Z, Sulman FG, Mertz W, Frenkel G, Kraicer PF. Insulin-potentiating effect of salt bush (Atriplex halimus L.) ashes. Isr J Med Sci 1972; 8: 757-758
  • 72 Stern E. Successful use of Atriplex halimus in the treatment of type 2 diabetic patients: a preliminary study. Tel Aviv: Zamenhoff Medical Center; 1989 (unpublished results)
  • 73 Frati-Munari AC, Gordillo BE, Altamirano P, Ariza CR. Hypoglycemic effect of Opuntia streptacantha Lemaire in NIDDM. Diabetes Care 1988; 11: 63-66
  • 74 Habibuddin M, Daghriri HA, Humaira T, Al-Qahtani MS, Hefzi A. Antidiabetic effect of alcoholic extract of Caralluma sinaica L. on streptozotocin-induced diabetic rabbits. J Ethnopharmacol 2008; 117: 215-220
  • 75 Grindlay D, Reynolds T. The Aloe vera phenomenon: a review of the properties and modern uses of the leaf parenchyma gel. J Ethnopharmacol 1986; 16: 117-151
  • 76 Ghannam N, Kingston M, Al-Meshaal IA, Tariq M, Parman NS, Woodhouse N. The antidiabetic activity of aloes: preliminary clinical and experimental observations. Hormone Res 1986; 24: 288-294
  • 77 Ajabnoor MA. Effect of aloes on blood glucose levels in normal and alloxan diabetic mice. J Ethnopharmacol 1990; 28: 215-220
  • 78 Hikino H, Takahashi M, Murakami M, Konno C, Mirin Y, Karikura M, Hayashi T. Isolation and hypoglycemic activity of arborans A and B, glycans of Aloe arborescens var. natalensis leaves. Int J Crude Drug Res 1986; 24: 183-186
  • 79 Tahraoui A, El-Hilaly J, Israili ZH, Lyoussi B. Ethnopharmacological survey of plants used in the traditional treatment of hypertension and diabetes in south-eastern Morocco (Errachidia province). J Ethnopharmacol 2007; 110: 105-117
  • 80 Ziyyat A, Legssyer A, Mekhfi H, Dassouli A, Serhrouchni M, Benjelloun W. Phytotherapy of hypertension and diabetes in oriental Morocco. J Ethnopharmacol 1997; 58: 45-54
  • 81 Arteaga S, Andrade-Cetto A, Cardenas R. Larrea tridentata (Creosote bush), an abundant plant of Mexican and US-American deserts and its metabolite nordihydroguaiaretic acid. J Ethnopharmacol 2005; 98: 231-239
  • 82 Luo J, Chuang T, Cheung J, Quan J, Tsai J, Sullivan C, Hector RF, Reed MJ, Meszaros K, King SR, Carlson TJ, Reaven GM. Masoprocol (nordihydroguaiaretic acid): a new antihyperglycemic agent isolated from the creosote bush (Larrea tridentata). Eur J Pharmacol 1998; 346: 77-79
  • 83 Kamel MS, Ohtani K, Kurokawa T, Assaf MH, El-Shanawany MA, Ali AA, Kasai R, Ishibashi S, Tanaka O. Studies on Balanites aegyptiaca fruits: an antidiabetic Egyptian folk medicine. Chem Pharmacol Bull 1991; 39: 1229-1233
  • 84 Ahmad VU, Rasool N, Choudhary MI, Khan SN. New treatment of diabetes mellitus. US Patent US 20070287674A120071213 2007
  • 85 Masella R, Di-Benedeto R, Vari R, Filesi C, Giovannini C. Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes. J Nutr Biochem 2005; 16: 577-586
  • 86 Van Zanden JJ, Geraets L, Worteboer HM, Van Bladeren PJ, Rietjens IM, Cnubben NH. Structural requirements for the flavonoid-mediated modulation of glutathione S-transferase and GS-X pump activity in MCF7 breast cancer cells. Biochem Pharmacol 2004; 67: 1607-1617
  • 87 Depeint F, Gee JM, Williamson G, Johnson IT. Evidence for consistent patterns between flavonoid structures and cellular activities. Proc Nutr Soc 2002; 61: 97-103
  • 88 Fukao T, Hosono T, Misawa S, Seki T, Ariga T. The effects of allyl sulfides on the induction of phase II detoxification enzymes and liver injury by carbon tetrachloride. Food Chem Toxicol 2004; 42: 743-749