Semin Thromb Hemost 2013; 39(03): 306-314
DOI: 10.1055/s-0032-1328971
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Distinct Role of von Willebrand Factor Triplet Bands in Glycoprotein Ib-Dependent Platelet Adhesion and Thrombus Formation under Flow

Birte Fuchs
1   Octapharma R&D, Department of Molecular Biochemistry Berlin, Berlin, Germany
,
Susanne de Witt
2   Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
,
Barbara A. Solecka
1   Octapharma R&D, Department of Molecular Biochemistry Berlin, Berlin, Germany
,
Mario Kröning
1   Octapharma R&D, Department of Molecular Biochemistry Berlin, Berlin, Germany
,
Tobias Obser
3   Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
,
Judith M. E. M. Cosemans
2   Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
,
Reinhard Schneppenheim
3   Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
,
Johan W. M. Heemskerk
2   Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
,
Christoph Kannicht
1   Octapharma R&D, Department of Molecular Biochemistry Berlin, Berlin, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
03 February 2013 (online)

Abstract

Multimeric glycoprotein von Willebrand factor (VWF) exhibits a unique triplet structure of individual oligomers, resulting from ADAMTS-13 (a disintegrin and metalloproteinase with thrombospondin type 1 motifs 13) cleavage. The faster and slower migrating triplet bands of a given VWF multimer have one shorter or longer N-terminal peptide sequence, respectively. Within this peptide sequence, the A1 domain regulates interaction of VWF with platelet glycoprotein (GP)Ib. Therefore, platelet-adhesive properties of two VWF preparations with similar multimeric distribution but different triplet composition were investigated for differential functional activities. Preparation A was enriched in intermediate triplet bands, whereas preparation B predominantly contained larger triplet bands. Binding studies revealed that preparation A displayed a reduced affinity for recombinant GPIb but an unchanged affinity for collagen type III when compared to preparation B. Under high-shear flow conditions, preparation A was less active in recruiting platelets to collagen type III. Furthermore, when added to blood from patients with von Willebrand disease (VWD), defective thrombus formation was less restored. Thus, VWF forms lacking larger-size triplet bands appear to have a decreased potential to recruit platelets to collagen-bound VWF under arterial flow conditions. By implication, changes in triplet band distribution observed in patients with VWD may result in altered platelet adhesion at high-shear flow.

 
  • References

  • 1 Ruggeri ZM, Ruggeri ZM. Platelet and von Willebrand factor interactions at the vessel wall. Hamostaseologie 2004; 24 (1) 1-11
  • 2 Savage B, Saldívar E, Ruggeri ZM. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell 1996; 84 (2) 289-297
  • 3 Hoylaerts MF, Yamamoto H, Nuyts K, Vreys I, Deckmyn H, Vermylen J. von Willebrand factor binds to native collagen VI primarily via its A1 domain. Biochem J 1997; 324 (Pt 1) 185-191
  • 4 Pareti FI, Niiya K, McPherson JM, Ruggeri ZM. Isolation and characterization of two domains of human von Willebrand factor that interact with fibrillar collagen types I and III. J Biol Chem 1987; 262 (28) 13835-13841
  • 5 Roth GJ, Titani K, Hoyer LW, Hickey MJ. Localization of binding sites within human von Willebrand factor for monomeric type III collagen. Biochemistry 1986; 25 (26) 8357-8361
  • 6 Cosemans JM, Schols SE, Stefanini L , et al. Key role of glycoprotein Ib/V/IX and von Willebrand factor in platelet activation-dependent fibrin formation at low shear flow. Blood 2011; 117 (2) 651-660
  • 7 Matsushita T, Dong Z, Sadler JE. von Willebrand's factor and von Willebrand's disease. Curr Opin Hematol 1994; 1 (5) 362-368
  • 8 Dong JF. Cleavage of ultra-large von Willebrand factor by ADAMTS-13 under flow conditions. J Thromb Haemost 2005; 3 (8) 1710-1716
  • 9 Dent JA, Galbusera M, Ruggeri ZM. Heterogeneity of plasma von Willebrand factor multimers resulting from proteolysis of the constituent subunit. J Clin Invest 1991; 88 (3) 774-782
  • 10 Furlan M, Robles R, Affolter D, Meyer D, Baillod P, Lämmle B. Triplet structure of von Willebrand factor reflects proteolytic degradation of high molecular weight multimers. Proc Natl Acad Sci U S A 1993; 90 (16) 7503-7507
  • 11 Fischer BE, Thomas KB, Schlokat U, Dorner F. Triplet structure of human von Willebrand factor. Biochem J 1998; 331 (Pt 2) 483-488
  • 12 Fischer BE, Thomas KB, Schlokat U, Dorner F. Selectivity of von Willebrand factor triplet bands towards heparin binding supports structural model. Eur J Haematol 1999; 62 (3) 169-173
  • 13 Keuren JF, Ulrichts H, Feijge MA , et al. Integrin alphaIIbbeta3 and shear-dependent action of glycoprotein Ibalpha stimulate platelet-dependent thrombin formation in stirred plasma. J Lab Clin Med 2003; 141 (5) 350-358
  • 14 Neugebauer BM, Goy C, Budek I, Seitz R. Comparison of two von Willebrand factor collagen-binding assays with different binding affinities for low, medium, and high multimers of von Willebrand factor. Semin Thromb Hemost 2002; 28 (2) 139-148
  • 15 Budde U, Schneppenheim R, Plendl H, Dent J, Ruggeri ZM, Zimmerman TS. Luminographic detection of von Willebrand factor multimers in agarose gels and on nitrocellulose membranes. Thromb Haemost 1990; 63 (2) 312-315
  • 16 Matsubara Y, Murata M, Sugita K, Ikeda Y. Identification of a novel point mutation in platelet glycoprotein Ibalpha, Gly to Ser at residue 233, in a Japanese family with platelet-type von Willebrand disease. J Thromb Haemost 2003; 1 (10) 2198-2205
  • 17 Russell SD, Roth GJ. Pseudo-von Willebrand disease: a mutation in the platelet glycoprotein Ib alpha gene associated with a hyperactive surface receptor. Blood 1993; 81 (7) 1787-1791
  • 18 Schneppenheim R, Obser T, Budde U, Patzke J. Development of a new functional assay for von Willebrand factor binding to platelet GpIba that does not require Ristocetin. Abstract presented at: Joint Meeting GTH & NVTH; February 24-27, 2010; Nuremberg, Germany
  • 19 Li F, Moake JL, McIntire LV. Characterization of von Willebrand factor interaction with collagens in real time using surface plasmon resonance. Ann Biomed Eng 2002; 30 (9) 1107-1116
  • 20 Romijn RA, Westein E, Bouma B , et al. Mapping the collagen-binding site in the von Willebrand factor-A3 domain. J Biol Chem 2003; 278 (17) 15035-15039
  • 21 Fuchs B, Budde U, Schulz A, Kessler CM, Fisseau C, Kannicht C. Flow-based measurements of von Willebrand factor (VWF) function: binding to collagen and platelet adhesion under physiological shear rate. Thromb Res 2010; 125 (3) 239-245
  • 22 Kuijpers MJ, Schulte V, Bergmeier W , et al. Complementary roles of glycoprotein VI and alpha2beta1 integrin in collagen-induced thrombus formation in flowing whole blood ex vivo. FASEB J 2003; 17 (6) 685-687
  • 23 Munnix IC, Kuijpers MJ, Auger J , et al. Segregation of platelet aggregatory and procoagulant microdomains in thrombus formation: regulation by transient integrin activation. Arterioscler Thromb Vasc Biol 2007; 27 (11) 2484-2490
  • 24 Munnix IC, Gilio K, Siljander PR , et al. Collagen-mimetic peptides mediate flow-dependent thrombus formation by high- or low-affinity binding of integrin alpha2beta1 and glycoprotein VI. J Thromb Haemost 2008; 6 (12) 2132-2142
  • 25 De Meyer SF, Vanhoorelbeke K, Ulrichts H , et al. Development of monoclonal antibodies that inhibit platelet adhesion or aggregation as potential anti-thrombotic drugs. Cardiovasc Hematol Disord Drug Targets 2006; 6 (3) 191-207
  • 26 Budde U, Pieconka A, Will K, Schneppenheim R. Laboratory testing for von Willebrand disease: contribution of multimer analysis to diagnosis and classification. Semin Thromb Hemost 2006; 32 (5) 514-521
  • 27 Furlan M, Robles R, Lämmle B. Partial purification and characterization of a protease from human plasma cleaving von Willebrand factor to fragments produced by in vivo proteolysis. Blood 1996; 87 (10) 4223-4234
  • 28 Ruggeri ZM. Von Willebrand factor: looking back and looking forward. Thromb Haemost 2007; 98 (1) 55-62
  • 29 Michiels JJ, Gadisseur A, Budde U , et al. Characterization, classification, and treatment of von Willebrand diseases: a critical appraisal of the literature and personal experiences. Semin Thromb Hemost 2005; 31 (5) 577-601
  • 30 Michiels JJ, Berneman Z, Gadisseur A , et al. Classification and characterization of hereditary types 2A, 2B, 2C, 2D, 2E, 2M, 2N, and 2U (unclassifiable) von Willebrand disease. Clin Appl Thromb Hemost 2006; 12 (4) 397-420
  • 31 Studt JD, Budde U, Schneppenheim R , et al. Quantification and facilitated comparison of von Willebrand factor multimer patterns by densitometry. Am J Clin Pathol 2001; 116 (4) 567-574
  • 32 Mohri H, Fujimura Y, Shima M , et al. Structure of the von Willebrand factor domain interacting with glycoprotein Ib. J Biol Chem 1988; 263 (34) 17901-17904
  • 33 Sobel M, Soler DF, Kermode JC, Harris RB. Localization and characterization of a heparin binding domain peptide of human von Willebrand factor. J Biol Chem 1992; 267 (13) 8857-8862