RSS-Feed abonnieren
DOI: 10.1055/s-0032-1330276
Difference in Dose Area Product between Analog Image Intensifier and Digital Flat Panel Detector in Peripheral Angiography and the Effect of BMI
Dosisflächenprodukte bei peripheren Angiografien im Vergleich zwischen einem analogen Bildverstärker- und einem Flachbilddetektorsystem und ihre BMI-AbhängigkeitPublikationsverlauf
02. Juni 2012
08. Oktober 2012
Publikationsdatum:
29. November 2012 (online)
Abstract
Purpose: Comparison of dose area products (DAP) in diagnostic angiography procedures between an image intensifier (II) and a flat panel detector (FPD) angiography system and the evaluation of DAP/body mass index (BMI) dependency.
Materials and Methods: An image intensifier system or a flat panel detector system was used to perform 571 diagnostic angiographies (n = 328 and n = 243, respectively) of 5 different types: peripheral arterial, venous, single leg, abdominal and upper extremity. The results were retrospectively analyzed. The DAP, fluoroscopy time (t) and the number of series of the respective interventions as calculated by the respective machines was compared for all interventions and for the respective subtypes and machines. The BMI dependency was calculated separately for both machines for all interventions by subdividing the patients into 6 BMI classes defined by the WHO.
Results: The average DAP for all diagnostic interventions was 1958.9 cGy×cm2 (t = 384.6 s, n = 7.85 series) for the II and 2927.4 cGy×cm2 (t = 267.4 s, n = 7.02 series) for the FPD. Group-dependent differences ranged between + 21 and + 252 % when using the FPD system. After time standardization, the respective increases were found to be 120 % for the FPD system. The DAPs increased considerably in patients with higher BMIs (766.7 cGy × cm2 – 6892.6 cGy × cm2, II machine, 950.5 cGy × cm2 – 12 487.7 cGy × cm2, FPD machine) with a greater DAP gain seen for the FPD. The average duration of the interventions was higher using the II machine.
Conclusion: The use of an FPD system led to higher DAP values compared to the II system in diagnostic angiographic procedures. In addition, increased BMI values led to higher DAPs, especially for the FPD machine. However, the average fluoroscopy times were shorter.
Zusammenfassung
Ziel: Dosisflächenproduktvergleich (Dose-Area-Products, DAP) bei diagnostischen Angiografien zwischen einem Bildverstärkerangiografiesystem (II) und einem Flachbilddetektorsystem (FPD) und Erhebung der DAP/Body-Mass-Index (BMI) Abhängigkeit.
Material und Methoden: Die folgenden 571 diagnostischen Angiografien wurden mit einem Bildverstärker- (n = 328) und mit einem Flachbilddetektorangiografiesystem (n = 243) retrospektiv evaluiert: arterielle Beckenbeinangiografien, venöse Beckenbeinangiografien, Feinnadelangiografien, abdominelle und obere Extremitätenangiografien. Erhoben wurde retrospektiv das Dosisflächenprodukt (DAP), die Fluoroskopiezeit (t) sowie die Serienanzahl der entsprechenden Interventionen an den entsprechenden Geräten. Die BMI-Abhängigkeit des DAPs wurde separat für beide Geräte und alle Interventionsklassen nach den 6 WHO-BMI-Klassen vorgenommen.
Ergebnisse: Das durchschnittliche DAP über alle Interventionen lag bei 1958,9 cGy×cm2 (t = 384,6 s, n = 7,85 Serien) für das II und bei 2927,4 cGy×cm2 (t = 267,4 s, n = 7,02 Serien) für das FPD-Gerät. Der DAP-Zuwachs nach Interventionsgruppe betrug zwischen + 21 % und + 252 % für das FPD-System. Nach Zeitnormierung betrug der DAP-Zuwachs beim FPD-Gerät 120 %. Die DAPs nahmen beim FPD-Gerät mit steigendem BMI deutlicher zu im Vergleich zum II-Gerät (766,7 cGy×cm2 – 6892,6 cGy×cm2 II-System, 950,5 cGy/cm2 – 12 487,7 cGy/cm2, FPD-System). Die durchschnittliche Durchleuchtungszeit war beim II-System höher.
Schlussfolgerung: Beim Gebrauch des FPD-Systems entstanden deutlich höhere DAP-Werte im Vergleich zum II-System bei diagnostischen Angiografien. Bei höherem BMI war der DAP-Zuwachs am FPD-Gerät höher, die Fluoroskopiezeiten jedoch deutlich geringer.
-
References
- 1 Duncan JR, Balter S, Becker GJ et al. Optimizing Radiation Use during Fluoroscopic procedures: Proceedings from a Multidisciplinary Consensus Panel. J Vasc Interv Radiol 2011; 22: 425-429
- 2 Gizewski ER, Weber R, Forsting M. Diagnostik und endovaskulare Therapie intrakranieller arterieller Stenosen. Fortschr Röntgenstr 2011; 183: 104-111
- 3 Floery D, Fellner FA, Fellner C et al. Zeitaufgelöste MR-Angiografie der Becken-Bein-Etage: ein Lösungsansatz für das Problem der venösen Überlagerungen. Fortschr Röntgenstr 2011; 183: 136-143
- 4 Lanzman RS, Schmitt P, Kropil P et al. Techniken der kontrastmittelfreien MR-Angiografie. Fortschr Röntgenstr 2011; 183: 913-924
- 5 Pantos I, Patatoukas G, Katritsis DG et al. Patient radiation doses in interventional cardiology procedures. Curr Cardiol Rev 2009; 5: 1-11
- 6 Bor D, Olgar T, Toklu T et al. Patient doses and dosimetric evaluations in interventional cardiology. Phys Med 2009; 25: 31-42
- 7 Bedetti G, Botto N, Andreassi MG et al. Cumulative patient effective dose in cardiology. Br J Radiol 2008; 81: 699-705
- 8 Ropolo R, Rampado O, Isoardi P et al. Evaluation of patient doses in interventional cardiology. Radiol Med 2001; 102: 384-390
- 9 Walsh SR, Cousins C, Tang TY et al. Ionizing radiation in endovascular interventions. J Endovasc Ther 2008; 15: 680-687
- 10 Dragusin O, Breisch R, Bokou C et al. Does flat panel detector reduce the patient radiation dose in interventional cardiology?. Radiat Prot Dosimetry 2010; 1–3: 266-270
- 11 Sapoval M, Pellerin O, Rehel JL et al. Uterine artery embolization for leiomyomata : optimization of the radiation dose to the patient using a flat panel detector angiography suite. Cardiovasc Intervent Radiol 2010; 33: 949-954
- 12 Holmes DR, Laskey WK, Wondrow MA et al. Flat-panel detectors in the cardiac catheterization laboratory: revolution or evolution – what are the issues?. Catheterization and Cardiovascular Interventions 2004; 63: 324-330
- 13 Granfors PR, Aufrichtig R. Performance of a 41×41-cm2 amorphous silicon flat panel X-ray detector for radiographic imaging applications. Medical Physics 2000; 27: 1324-1331
- 14 Spahn M. Flat detectors and their clinical applications. European Radiology 2005; 15: 1934-1947
- 15 Laskey W, Wondrow M, Chambers C. Fluoroscopic image quality in the film and filmless eras: a standardized comparison performed in coronary interventional facilities. Catheter Cardiovasc Interv 2003; 58: 383-390
- 16 Chida K, Saito H, Zuguchi M et al. Does digital acquisition reduce patients’ skin dose in cardiac interventional procedures: an experimental study. Am J Roentgenol 2004; 183: 1111-1114
- 17 Davies GA, Cowen AR, Kengyelics SM et al. Do flat detector cardiac X-ray systems convey advantages over image-intensifier-based systems? Study comparing X-ray dose and image quality. European Radiology 2007; 17: 1787-1794
- 18 Prasan AM, Ison G, Rees DM. Radiation exposure during elective coronary angioplasty: the effect of flat panel detection. Heart Lung Circ 2008; 17: 215-219
- 19 Hausegger KA, Furstner M, Hauser M et al. Klinische Anwendung der Flachdetektor-CT im Angio-OP. Fortschr Röntgenstr 2011; 183: 1116-1122
- 20 Rampado O, Luberto L, Faletti R et al. Radiation dose evaluations during radiological contrast studies in patients with morbid obesity. Radiol Med 2008; 113: 1229-1240
- 21 Zhang C, Zhang Z, Yan Z et al. 320-row CT coronary angiography: effect of 100-kv tube voltages on image quality, contrast volume, and radiation dose. Int J Cardiovasc Imaging 2010; 27: 1059-1068
- 22 Wiesinger B, Stütz A, Schmehl J et al. Comparison of digital flat-panel detector and conventional angiography machines: evaluation of stent detection rates, visibility scores, and dose area products. Am J Roentgenol 2012; 198: 946-954
- 23 Suzuki S, Furui S, Yamaguchi I et al. Effective dose during abdominal three-dimensional imaging with a flat panel detector. Radiology 2009; 250: 545-550
- 24 Ketelsen D, Buchgeister M, Fenchel M et al. Automated computed tomography dose-saving algorithm to protect radiosensitive tissues: estimation of radiation exposure and image quality considerations. Invest Radiol 2012; 47: 148-152
- 25 Rivolta A, Emanuelli S, Tessarin C et al. Method of patient dose evaluation in the angiographic and interventional radiology procedures. Radiol Med 2005; 110: 689-98
- 26 Tsalafoutas IA, Goni H, Maniatis PN et al. Patient doses from noncardiac diagnostic and therapeutic interventional procedures. J Vasc Interv Radiol 2006; 17: 1489-1498
- 27 Georges JL, Livarek B, Gibault-Genty G et al. Reduction of radiation delivered to patients undergoing invasive coronary procedures. Effect of a programme for dose reduction based on radiation-protection training. Arch Cardiovasc Dis 2009; 102: 821-827
- 28 Williams JR. The interdependence of staff and patient doses in interventional radiology. Br J Radiol 1998; 71: 1333-1334
- 29 Vano E, Gonzalez L, Fernandez JM et al. Patient dose values in interventional radiology. Br J Radiol 1995; 68: 1215-1220
- 30 Ruiz-Cruces R, Perez-Martinez M, Martin-Palanca A et al. Patient dose in radiologically guided interventional vascular procedures : conventional versus digital systems. Radiology 1998; 209: 589-590
- 31 Seibert JA. Flat-panel detectors: how much better are they?. Pediatric Radiology 2006; 36: 173-181
- 32 Antonuk LE, Jee KW, El-Mohri Y et al. Strategies to improve the signal and noise performance of active matrix, flat-panel imagers for diagnostic X-ray applications. Medical Physics 2000; 27: 289-306
- 33 Tsapaki V, Kottou S, Kollaros N et al. Comparison of a conventional and a flat-panel digital system in interventional cardiology procedures. Br J Radiol 2004; 77: 562-567
- 34 Grieser T, Baldauf AQ, Ludwig K. Radiation dose reduction in scoliosis patients: low-dose full-spine radiography with digital flat panel detector and image stitching system. Fortschr Röntgenstr 2011; 183: 645-649
- 35 Hess R, Neitzel U. Optimizing Image Quality and Dose for Digital Radiography of Distal Pediatric Extremities Using the Contrast-to-Noise Ratio. Fortschr Röntgenstr 2012; 184: 643-649