Subscribe to RSS
DOI: 10.1055/s-0032-1330515
Flachdetektor-Computertomografie in der diagnostischen und interventionellen Kinderkardiologie
Flat Detector Computed Tomography in Diagnostic and Interventional Pediatric CardiologyPublication History
23 August 2012
12 December 2012
Publication Date:
14 March 2013 (online)
Zusammenfassung
Ziel: Evaluation der Einsatzmöglichkeiten der Flachdetektor-Computertomografie (FD-CT) bei der Katheterisierung von Patienten mit angeborenen Herzfehlern. Erstellen von Anwendungsprotokollen für unterschiedliche Fragestellungen anhand der erzielten Bildqualität in verschiedenen anatomischen Regionen.
Material und Methoden: Die FD-CT wurde zwischen Januar 2010 und April 2012 in 176 Fällen während der Herzkatheteruntersuchung verwendet. Zur Evaluation der Bildqualität wurde eine 5-Punkte-Likert-Skala (von „essenziell“ bis „irreführend“) verwendet. Alle Fälle wurden retrospektiv analysiert und es wurden Applikationsprotokolle zur Visualisierung der Aorta, Pulmonalarterien, Lungenvenen, Semilunarklappen, cavopulmonalen Anastomosen und systemvenöser Tunnel erstellt. Der Kontrastmittelverbrauch und die Strahlendosis wurden ausgewertet.
Ergebnisse: Im untersuchten Zeitraum wurde die FD-CT in 176 Fälle durchgeführt. Die Patienten hatten ein mittleres Alter von 7,0 Jahren (0,01 – 42,53 Jahre). Die klinische Wertigkeit der FD-CT übertraf in 96,6 % der Fälle die konventionelle Angiografie und wurde nie als „irreführend“ bewertet. Die FD-CT wurde in 3,4 % der Fälle als „essenziell“, in 77,3 % der Fälle als „sehr nützlich“, in 15,9 % der Fälle als „nützlich“ und in 3,4 % der Fälle als „nicht nützlich“ bewertet. Das mittlere Dosis-Flächen-Produkt war 99 µGym2 (19,3 – 1276,6 µGym2). Die benötigte Kontrastmittelmenge 1,76 ml/kg (0,9 – 5 ml/kg). Applikationsprotokolle zur Visualisierung unterschiedlicher anatomischer Regionen werden dargestellt.
Schlussfolgerung: Die FD-CT ist ein neues und hilfreiches Verfahren bei der diagnostischen und interventionellen Katheterisierung von Patienten mit angeborenen Herzfehlen. Insbesondere extrakardiale vaskuläre Strukturen lassen sich in hoher Auflösung dreidimensional darstellen und dienen zur Diagnostik, chirurgischen Planung und zur 3D-Navigation bei Interventionen.
Abstract
Purpose: In this study the use of flat detector computed tomography (FD-CT) in the catheterization of patients with congenital heart disease was evaluated. Application reports were created for various issues based on the achieved image quality in diverse anatomical regions.
Materials and Methods: FD-CT was applied in 176 cases during catheterization between January 2010 and April 2012. A five-point Likert scale (“essential” to “misleading”) was used to evaluate image quality. All cases were analyzed retrospectively and application reports for the visualization of the aorta, pulmonary arteries, pulmonary veins, semilunar valves, cavopulmonary connections and atrial baffles were generated. Contrast dye consumption and radiation dose were evaluated.
Results: During the observation period FD-CT was applied in all 176 cases. The mean patient age was 7.0 years (0.01 – 42.53 years). The clinical value of FD-CT was rated superior to conventional angiography in 96.6 % of the cases and was never rated as “misleading”. FD-CT was rated “essential” in 3.4 % of all cases, “very useful” in 77.3 % of all cases, “useful” in 15.9 % of all cases and “not useful” in 3.4 % of all cases. The mean dose-area product was 99 µGym2 (19.3 – 1276.6 µGym2), and the used contrast dye was 1.76 ml/kg (0.9 – 5 ml/kg). Application reports for the visualization of different anatomical regions are demonstrated.
Conclusion: FD-CT is a new and auxiliary procedure in diagnostic and interventional catheterization of patients with congenital heart disease. Particularly extracardiac structures can be displayed in three-dimensional high resolution and be used for diagnosis, surgical planning and 3 D navigation.
-
Literatur
- 1 Achenbach S, Barkhausen J, Beer M et al. Consensus recommendations of the German Radiology Society (DRG), the German Cardiac Society (DGK) and the German Society for Pediatric Cardiology (DGPK) on the use of cardiac imaging with computed tomography and magnetic resonance imaging. Fortschr Röntgenstr 2012; 184: 345-368
- 2 Kyriakou Y, Struffert T, Dorfler A et al. Basic principles of flat detector computed tomography (FD-CT). Radiologe 2009; 49: 811-819
- 3 Feldkamp LA, Kress JW. Practical cone-beam algorithm. J Opt Soc A 1984; 1: 612-619
- 4 Blendl C, Fiebich M, Voigt JM et al. Investigation on the 3 D geometric accuracy and on the image quality (MTF, SNR and NPS) of volume tomography units (CT, CBCT and DVT). Fortschr Röntgenstr 2012; 184: 24-31
- 5 Schoenhagen P, Numburi U, Halliburton SS et al. Three-dimensional imaging in the context of minimally invasive and transcatheter cardiovascular interventions using multi-detector computed tomography: from pre-operative planning to intra-operative guidance. European Heart Journal 2010; 31: 2727-2740
- 6 Hausegger KA, Furstner M, Hauser M et al. Clinical application of flat-panel CT in the angio suite. Fortschr Röntgenstr 2011; 183: 1116-1122
- 7 Struffert T, Doerfler A. Flat-detector computed tomography in diagnostic and interventional neuroradiology. Radiologe 2009; 49: 820-829
- 8 Glockler M, Koch A, Greim V et al. The value of flat-detector computed tomography during catheterisation of congenital heart disease. European radiology 2011; 21: 2511-2520
- 9 Glatz AC, Zhu X, Gillespie MJ et al. Use of angiographic CT imaging in the cardiac catheterization laboratory for congenital heart disease. JACC Cardiovascular imaging 2010; 3: 1149-1157
- 10 Glockler M, Koch A, Halbfass J et al. Assessment of cavopulmonary connections by advanced imaging: value of flat-detector computed tomography. Cardiology in the young 2012; 1-9 DOI: 10.1017/S104795111200025X.
- 11 Alkadhi H, Leschka S, Stolzmann P et al. Wie Funktioniert CT?. Springer; 2011
- 12 Ellis AR, Mulvihill D, Bradley SM et al. Utility of computed tomographic angiography in the pre-operative planning for initial and repeat congenital cardiovascular surgery. Cardiology in the young 2010; 20: 262-268
- 13 Likert R. A Technique for the Measurement of Attitudes. Archives of Psychology 1932; 22: 1-55
- 14 Struffert T, Dörfler A. Flachdetektor-CT in der diagnostischen und interventionellen Neuroradiologie. Der Radiologe 2009; 49: 820-829
- 15 Kyriakou Y, Struffert T, Dörfler A et al. Grundlagen der Flachdetektor-CT (FD-CT). Der Radiologe 2009; 49: 811-819
- 16 Gupta R, Cheung AC, Bartling SH et al. Flat-panel volume CT: fundamental principles, technology, and applications. Radiographics 2008; 28: 2009-2022
- 17 Kalender WA, Kyriakou Y. Flat-detector computed tomography (FD-CT). European radiology 2007; 17: 2767-2779
- 18 Thiagalingam A, Manzke R, D’Avila A et al. Intraprocedural Volume Imaging of the Left Atrium and Pulmonary Veins with Rotational X-Ray Angiography: Implications for Catheter Ablation of Atrial Fibrillation. Journal of Cardiovascular Electrophysiology 2008; 19: 293-300
- 19 Tang MIN, Kriatselis C, Ye G et al. Reconstructing and Registering Three-Dimensional Rotational Angiogram of Left Atrium during Ablation of Atrial Fibrillation. Pacing and Clinical Electrophysiology 2009; 32: 1407-1416
- 20 Ector J, De Buck S, Nuyens D et al. Adenosine-induced ventricular asystole or rapid ventricular pacing to enhance three-dimensional rotational imaging during cardiac ablation procedures. Europace 2009; 11: 751-762
- 21 Meyhoer J, Ahrens J, Neuss M et al. Rotational angiography for preinterventional imaging in transcatheter aortic valve implantation. Catheterization and cardiovascular interventions: official journal of the Society for Cardiac Angiography & Interventions 2012; 79: 756-765
- 22 Schwartz JG, Neubauer AM, Fagan TE et al. Potential role of three-dimensional rotational angiography and C-arm CT for valvular repair and implantation. The international journal of cardiovascular imaging 2011; 27: 1205-1222
- 23 Fagan T, Kay J, Carroll J et al. 3D guidance of complex pulmonary artery stent placement using reconstructed rotational angiography with live overlay. Catheterization and cardiovascular interventions: official journal of the Society for Cardiac Angiography & Interventions 2012; 79: 414-421
- 24 Krishnaswamy A, Tuzcu EM, Kapadia SR. Three-dimensional computed tomography in the cardiac catheterization laboratory. Catheterization and cardiovascular interventions: official journal of the Society for Cardiac Angiography & Interventions 2011; 77: 860-865
- 25 Saikus CE, Lederman RJ. Interventional cardiovascular magnetic resonance imaging: a new opportunity for image-guided interventions. JACC Cardiovascular imaging 2009; 2: 1321-1331
- 26 Kapins CEB, Coutinho RB, Barbosa FB et al. Uso da Angiografia Rotacional 3D (3D-RA) em Portadores de Cardiopatias Congênitas: Experiência de 53 Casos. Rev Bras Cardiol Invasiva 2010; 18: 199-203
- 27 Berman DP, Khan DM, Gutierrez Y et al. The use of three-dimensional rotational angiography to assess the pulmonary circulation following cavo-pulmonary connection in patients with single ventricle. Catheter Cardiovasc Interv 2012; DOI: 10.1002/ccd.23461.
- 28 Glockler M, Halbfass J, Koch A et al. Multimodality 3D-roadmap for cardiovascular interventions in congenital heart disease – a single-center, retrospective analysis of 78 cases. Catheterization and cardiovascular interventions: official journal of the Society for Cardiac Angiography & Interventions 2012; DOI: 10.1002/ccd.24646.