Subscribe to RSS
DOI: 10.1055/s-0032-1330537
© Georg Thieme Verlag KG Stuttgart · New York
MR-Mikroskopie des humanen Auges
MR Microscopy of the Human EyePublication History
Publication Date:
08 February 2013 (online)

Zusammenfassung
Die Ultra-Hochfeld-MR-Mikroskopie ist ein neues bildgebendes Verfahren, das nicht invasiv die hochauflösende verzerrungsfreie Darstellung der Strukturen des humane Auges ermöglicht. Dieser Übersichtsartikel liefert einen Überblick über die Methodik der MR-Mikroskopie und ihren Stellenwert im Vergleich zu anderen ophthalmologischen Verfahren. Die MR-mikroskopische Anatomie des humanen Auges mit Korrelation zur Histologie wird beschrieben. Exemplarische Anwendungen im Rahmen ophthalmologisch-experimenteller Fragestellungen werden diskutiert.
Abstract
Ultra-high-field MR microscopy is a novel, non-invasive imaging technique to explore the strcutures of the human eye without optical distorsions. This review aims to provide an insight into the technique of the method. The normal MR microscopic anatomy of the human eye with correlations to histology is demonstrated. The use of MR microscopy in ther experimental ophthalmological setting is discussed.
Schlüsselwörter
Anatomie - Pathologie - okuläre Tumoren
Key words
anatomy - pathology - occular tumours
Literatur
- 1
Wolffsohn J S, Peterson R C.
Anterior ophthalmic imaging.
Clin Exp Optom.
2006;
89 (4)
205-214
MissingFormLabel
- 2
Fink W.
Refractive correction method for digital charge-coupled device-recorded Scheimpflug
photographs by means of ray tracing.
J Biomed Opt.
2005;
10 (2)
024 003
MissingFormLabel
- 3
Linnola R J, Findl O, Hermann B et al.
Intraocular lens-capsular bag imaging with ultrahigh-resolution optical coherence
tomography Pseudophakic human autopsy eyes.
J Cataract Refract Surg.
2005;
31 (4)
818-823
MissingFormLabel
- 4
Foster F S, Pavlin C J, Harasiewicz K A et al.
Advances in ultrasound biomicroscopy.
Ultrasound Med Biol.
2000;
26 (1)
1-27
MissingFormLabel
- 5
Stachs O, Martin H, Behrend D et al.
Three-dimensional ultrasound biomicroscopy, environmental and conventional scanning
electron microscopy investigations of the human zonula ciliaris for numerical modelling
of accommodation.
Graefes Arch Clin Exp Ophthalmol.
2006;
244 (7)
836-844
MissingFormLabel
- 6
Langner S, Martin H, Terwee T et al.
7.1T MRI to assess the anterior segment of the eye.
Investigative ophthalmology & visual science (Research Support, Non-U. S. Gov’t).
2010;
51 (12)
6575-6581
MissingFormLabel
- 7
Georgouli T, James T, Tanner S et al.
High-resolution microscopy coil MR-Eye.
Eye.
2008;
22 (8)
994-996
MissingFormLabel
- 8
Hermans E A, Pouwels P J, Dubbelman M et al.
Constant volume of the human lens and decrease in surface area of the capsular bag
during accommodation: an MRI and Scheimpflug study.
Invest Ophthalmol Vis Sci.
2009;
50 (1)
281-289
MissingFormLabel
- 9
Richdale K, Wassenaar P, Teal Bluestein K et al.
7 Tesla MR imaging of the human eye in vivo.
J Magn Reson Imaging.
2009;
30 (5)
924-932
MissingFormLabel
- 10
Trick G L, Edwards P A, Desai U et al.
MRI retinovascular studies in humans: research in patients with diabetes.
NMR Biomed.
2008;
21 (9)
1003-1012
MissingFormLabel
- 11
Hosten N, Lemke A, Sander B et al.
MRT of the eye: the normal anatomy and detection of the smallest lesions with a high-resolution
surface coil.
Fortschr Röntgenstr.
1996;
164 (2)
126-131
MissingFormLabel
- 12
Lemke A J, Hosten N, Foerster P I et al.
Using high resolution sectional imaging in diagnosis of the eye and orbit.
Ophthalmologe.
2001;
98 (5)
435-445
MissingFormLabel
- 13
Lemke A J, Kazi I, Landeck L M et al.
Differential diagnosis of intraconal orbital masses using high-resolution MRI with
surface coils in 78 patients.
Fortschr Röntgenstr.
2004;
176 (10)
1436-1446
MissingFormLabel
- 14
Stroszczynski C, Hosten N, Bornfeld N et al.
Choroidal hemangioma: MR findings and differentiation from uveal melanoma.
AJNR Am J Neuroradiol.
1998;
19 (8)
1441-1447
MissingFormLabel
- 15
Lemke A J, Hosten N, Wiegel T et al.
Intraocular metastases: differential diagnosis from uveal melanomas with high-resolution
MRI using a surface coil.
Eur Radiol.
2001;
11 (12)
2593-2601
MissingFormLabel
- 16
Strenk S A, Semmlow J L, Strenk L M et al.
Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging
study.
Invest Ophthalmol Vis Sci.
1999;
40 (6)
1162-1169
MissingFormLabel
- 17
Kneeland J B, Hyde J S.
High-resolution MR imaging with local coils.
Radiology (Review).
1989;
171 (1)
1-7
MissingFormLabel
- 18
Schueler A O, Hosten N, Bechrakis N E et al.
High resolution magnetic resonance imaging of retinoblastoma.
Br J Ophthalmol.
2003;
87 (3)
330-335
MissingFormLabel
- 19
Singh K D, Logan N S, Gilmartin B.
Three-dimensional modeling of the human eye based on magnetic resonance imaging.
Invest Ophthalmol Vis Sci.
2006;
47 (6)
2272-2279
MissingFormLabel
- 20
Lemke A J, Alai-Omid M, Hengst S A et al.
Eye imaging with a 3.0-T MRI using a surface coil – a study on volunteers and initial
patients with uveal melanoma.
Eur Radiol.
2006;
16 (5)
1084-1089
MissingFormLabel
- 21
Christoforidis G A, Yang M, Kontzialis M S et al.
High resolution ultra high field magnetic resonance imaging of glioma microvascularity
and hypoxia using ultra-small particles of iron oxide.
Invest Radiol.
2009;
44 (7)
375-383
MissingFormLabel
- 22
Poser B A, Koopmans P J, Witzel T et al.
Three dimensional echo-planar imaging at 7 Tesla.
Neuroimage.
2010;
51 (1)
261-266
MissingFormLabel
- 23
Thomas B P, Welch E B, Niederhauser B D et al.
High-resolution 7 T MRI of the human hippocampus in vivo.
J Magn Reson Imaging.
2008;
28 (5)
1266-1272
MissingFormLabel
- 24
Stachs O, Langner S, Terwee T et al.
In vivo 7.1T magnetic resonance imaging to assess the lens geometry in rabbit eyes
3 years after lens-refilling surgery.
Journal of cataract and refractive surgery (Research Support, Non-U. S. Gov’t).
2011;
37 (4)
749-757
MissingFormLabel
- 25
Fatterpekar G M, Delman B N, Boonn W W et al.
MR microscopy of normal human brain.
Magn Reson Imaging Clin N Am.
2003;
11 (4)
641-653
MissingFormLabel
- 26
Bammer R.
Basic principles of diffusion-weighted imaging.
Eur J Radiol.
2003;
45 (3)
169-184
MissingFormLabel
- 27
Mori S, Zhang J.
Principles of diffusion tensor imaging and its applications to basic neuroscience
research.
Neuron.
2006;
51 (5)
527-539
MissingFormLabel
- 28
Berkowitz B A.
MRI of retinal and optic nerve physiology.
NMR Biomed.
2008;
21 (9)
927
MissingFormLabel
- 29
Berkowitz B A, Roberts R.
Prognostic MRI biomarkers of treatment efficacy for retinopathy.
NMR Biomed.
2008;
21 (9)
957-967
MissingFormLabel
- 30
Henning T D, Saborowski O, Golovko D et al.
Cell labeling with the positive MR contrast agent Gadofluorine M.
Eur Radiol.
2007;
17 (5)
1226-1234
MissingFormLabel
- 31
Freddo T F, Patz S, Arshanskiy Y.
Pilocarpine’s effects on the blood-aqueous barrier of the human eye as assessed by
high-resolution, contrast magnetic resonance imaging.
Exp Eye Res.
2006;
82 (3)
458-464
MissingFormLabel
- 32
Townsend K A, Wollstein G, Schuman J S.
Clinical application of MRI in ophthalmology.
NMR Biomed.
2008;
21 (9)
997-1002
MissingFormLabel
- 33
Metcalf M, Xu D, Okuda D T et al.
High-resolution phased-array MRI of the human brain at 7 tesla: initial experience
in multiple sclerosis patients.
J Neuroimaging.
2010;
20 (2)
141-147
MissingFormLabel
Korrespondenzadresse
Dr. Soenke Langner
Institut für Diagnostische Radiologie und Neuroradiologie, Universitätsmedizin Greifswald
Ferdinand-Sauerbruch-Str. 1
17489 Greifswald
Phone: ++ 49/38 34/86 69 60
Fax: ++ 49/38 34/86 70 91
Email: soenke.langner@uni-greifswald.de