Physikalische Medizin, Rehabilitationsmedizin, Kurortmedizin 2013; 23(02): 115-119
DOI: 10.1055/s-0032-1333223
Wissenschaft und Forschung
© Georg Thieme Verlag KG Stuttgart · New York

Electrical Muscle Stimulation Normalizes Blood Glucose Level in Streptozotocin-induced Diabetic Rats

Elektrische Muskelstimulation normalisiert den Blutglukosespiegel eines Streptozotocin-induzierten Diabetes bei Ratten
W.-Z. Lu
1   Department of Biomedical Engineering, Xi’an Technological University, Xi’an, Shaanxi Province, China
,
Y. Ni
1   Department of Biomedical Engineering, Xi’an Technological University, Xi’an, Shaanxi Province, China
,
X.-Y. Meng
1   Department of Biomedical Engineering, Xi’an Technological University, Xi’an, Shaanxi Province, China
› Institutsangaben
Weitere Informationen

Publikationsverlauf

received: 06. September 2012

accepted: 09. November 2012

Publikationsdatum:
10. April 2013 (online)

Abstract

Background:

Patients with diabetes suffer from slow-to-heal wounds, which often necessitate amputation. Electrical stimulation has been shown to reduce the healing time in such patients.

Objectives:

This study aimed to determine the effect of electrical muscle stimulation on insulin resistance, glucose absorption, and blood lipids in type 2 diabetic rat model.

Methods:

Diabetic rats and normal rats were treated with electrical muscle stimulation (10 Hz, 2 mA, 20 ms) for 40 days. Blood glucose, lipids, insulin and resistin were measured to evaluate antidiabetic activity of electrical stimulation.

Results:

Diabetic rats treated with electrical muscle stimulation resulted in a significant decrease in the concentration of plasma total cholesterol and triglycerides, improved the body weight. Furthermore, electrical stimulation markedly decreased blood glucose level in the diabetic rats. The levels of plasma insulin and resistin exhibited significantly lower in the diabetic rats treated with electrical stimulation than those of the model group. Extending the stimulation up to 20 min from 10 min did not cause significant changes in all the measured blood biochemistry indices and body weight.

Conclusions:

This study showed that electrical muscle stimulation can improve adipose metabolic disturbance in the experimental type 2 ­diabetic rats, can effectively ameliorate insulin resistance and plasma glucose transport by decreasing the levels of plasma resistin.

Zusammenfassung

Hintergrund:

Patienten mit Diabetes leiden unter schlecht heilenden Wunden, welche oft zu Amputationen führen. Elektrostimulation zeigt eine Verkürzung der Wundheilungszeit bei diesen Patienten.

Gegenstand:

Die Studie untersucht die Wirkung einer Elektrostimulation auf die Insulinresistenz, Glukoseabsorption und die Blutfettwerte bei einem Typ-2-Diabetes-Modell der Ratte.

Methode:

Ratten mit Diabetes und gesunde Ratten wurden mit einer elektrischen Muskel­stimulation (10  Hz, 2  mA, 20  ms) 40  Tage behandelt. Blutglukose, Fettwerte, Insulin und Resistin wurden zur Bewertung der antidiabetischen Wirkung dieser Elektrostimulation bestimmt.

Ergebnisse:

Die Ratten mit Diabetes und Muskelstimulation zeigen einen signifikanten Abfall der Plasmakonzentration von Gesamt­cholesterin und Triglyceriden und Verbesserung des Körpergewichts. Außerdem senkt die Elek­trostimulation den Blutglukosespiegel bei den Ratten mit Diabetes. Die Blutkonzentrationen von Insulin und Resistin sind signifikant nie­d­riger in der Gruppe der Ratten mit Diabetes und Elektrostimulation als in der Vergleichsgruppe. Eine Verlängerung der Behandlungszeit von 10 auf 20  min pro Tag ergibt keine signifikanten Änderungen der gemessenen Blutwerte und des Körpergewichts.

Schlussfolgerungen:

Die Studie zeigt, dass muskuläre Elektrostimulation die Fettstoffwechsel Störung im experimentellen Tiermodell (Ratte) des Typ-2-Diabetes verbessern kann; es kann die Insulinresistenz und den Plasma-Glukose-Transport durch Reduktion des Plasma-Resistin-Spiegels wirksam verbessern.

 
  • References

  • 1 Akkati S, Sam KG, Tungha G. Emergence of promising therapies in diabetes mellitus. J Clin Pharmacol 2010; 51: 796-804
  • 2 Nicholson G, Hall GM. Diabetes mellitus: new drugs for a new epidemic. Br J Anaesth 2011; 107: 65-73
  • 3 Kahn SE, Zinman B, Lachin JM et al. Rosiglitazone-associated fractures in type 2 diabetes: an Analysis from A Diabetes Outcome Progression Trial (ADOPT). Diabetes Care 2008; 31: 845-851
  • 4 Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 2007; 356: 2457-2471
  • 5 Nicolle E, Souard F, Faure P et al. Flavonoids as promising lead compounds in type 2 diabetes mellitus: molecules of interest and structure-activity relationship. Curr Med Chem 2011; 18: 2661-2672
  • 6 Wang F, Gao Y, Zhang L et al. A pair of windmill-shaped enantiomers from Lindera aggregata with activity toward improvement of insulin sensitivity. Org Lett 2010; 12: 3196-3199
  • 7 Jung M, Park M, Lee HC et al. Antidiabetic agents from medicinal plants. Curr Med Chem 2006; 13: 1203-1218
  • 8 Tepper SJ, Rezai A, Narouze S et al. Acute treatment of intractable migraine with sphenopalatine ganglion electrical stimulation. Headache 2009; 49: 983-989
  • 9 Lecybyl R, Acosta J, Ghoshdastidar J et al. Validation, reproducibility and safety of trans dermal electrical stimulation in chronic pain patients and healthy volunteers. BMC Neurol 2010; 10: 5
  • 10 Bennett MI, Johnson MI, Brown SR et al. Feasibility study of Transcutaneous Electrical Nerve Stimulation (TENS) for cancer bone pain. J Pain 2010; 11: 351-359
  • 11 Resende MA, Sabino GG, Candido CR et al. Local transcutaneous electrical stimulation (TENS) effects in experimental inflammatory edema and pain. Eur J Pharmacol 2004; 504: 217-222
  • 12 Engineer ND, Riley JR, Seale JD et al. Reversing pathological neural activity using targeted plasticity. Nature 2011; 470: 101-104
  • 13 Patel NK, Javed S, Khan S et al. Deep brain stimulation relieves refractory hypertension. Neurology 2011; 76: 405-407
  • 14 Greenway F, Zheng J. Electrical stimulation as treatment for obesity and diabetes. J Diabetes Sci Technol 2007; 1: 251-259
  • 15 Langfort J, Czarnowski D, Budohoski L et al. Electrical stimulation partly reverses the muscle insulin resistance caused by tenotomy. FEBS Lett 1993; 315: 183-186
  • 16 Aas V, Torbla S, Andersen MH et al. Electrical stimulation improves insulin responses in a human skeletal muscle cell model of hyperglycemia. Ann N Y Acad Sci 2002; 967: 506-515
  • 17 Lu WZ, Meng XY, Jia GF et al. Baicalin normalizes blood glucose level in streptozotocin-induced diabetic rats. Lat Am J Pharm 2012; 31: 214-219
  • 18 Fuliang HU, Hepburn HR, Xuan H et al. Effects of propolis on blood glucose, blood lipid and free radicals in rats with diabetes mellitus. Pharmacol Res 2005; 51: 147-152
  • 19 Li C, Liu S, Guan Y et al. Long pulse gastric electrical stimulation induces regeneration of myenteric plexus synaptic vesicles in diabetic rats. Neurogastroenterol Motil 2010; 22: 453-461 e108
  • 20 Poole RB, Harrold CP, Burridge JH et al. Electrical muscle stimulation acutely mimics exercise in neurologically intact individuals but has limited clinical benefits in patients with type 2 diabetes. Diabetes Obes Metab 2005; 7: 344-351
  • 21 Policker S, Haddad W, Yaniv I. Treatment of type 2 diabetes using meal-triggered gastric electrical stimulation. Isr Med Assoc J 2009; 11: 206-208
  • 22 Sanmiguel CP, Conklin JL, Cunneen SA et al. Gastric electrical stimulation with the TANTALUS System in obese type 2 diabetes patients: effect on weight and glycemic control. J Diabetes Sci Technol 2009; 3: 964-970
  • 23 Chen J, Pasricha PJ, Yin J et al. Hepatic electrical stimulation reduces blood glucose in diabetic rats. Neurogastroenterol Motil 2010; 22: 1109-e286
  • 24 Bohdjalian A, Ludvik B, Guerci B et al. Improvement in glycemic control by gastric electrical stimulation (TANTALUS) in overweight subjects with type 2 diabetes. Surg Endosc 2009; 23: 1955-1960
  • 25 Jóhannsson E, Jensen J, Gundersen K et al. The effect of electrical stimulation patterns on glucose transport in rat muscles. Am J Physiol (Regulatory Integrative Comp Physiol 40) 1996; 271: R426-R431
  • 26 McKenna MJ, Gissel H, Clausen T. Effects of electrical stimulation and insulin on Na+-K+-ATPase ([3 H]ouabain binding) in rat skeletal muscle. J Physiol 2003; 547: 567-580
  • 27 Habib SS, Aslam M. Lipids and lipoprotein (a) concentrations in Pakistani patients with type 2 diabetes mellitus. Diabetes Obes Metab 2004; 6: 338-343
  • 28 Langhi C, Cariou B. Cholesterol metabolism and beta-cell function. Med Sci (Paris) 2010; 26: 385-390
  • 29 Hopp JF, Palmer WK. Effect of electrical stimulation on intracellular triacylglycerol in isolated skeletal muscle. J Appl Physiol 1990; 68: 348-354
  • 30 Chan TM, Dehaye JP, Tatoyan A. Activation of lipolysis by epinephrine and electrical stimulation in the perfused hindquarters of lean and obese-diabetic (db/db) mice. Biochim Biophys Acta 1983; 751: 384-392
  • 31 Belai A, Lincoln J, Burnstock G. Lack of release of vasoactive intestinal polypeptide and calcitonin gene-related peptide during electrical stimulation of enteric nerves in streptozotocin-diabetic rats. Gastroenterology 1987; 93: 1034-1040
  • 32 Steppan CM, Bailey ST, Bhat S et al. The hormone resistin links obesity to diabetes. Nature 2001; 409: 307-312
  • 33 Hirosumi J, Tuncman G, Chang L et al. A central role for JNK in obesity and insulin resistance. Nature 2002; 420: 333-336
  • 34 Rajala MW, Qi Y, Patel HR et al. Regulation of resistin expression and circulating levels in obesity, diabetes, and fasting. Diabetes 2004; 53: 1671-1679
  • 35 Fujinami A, Obayashi H, Ohta K et al. Enzyme-linked immunosorbent assay for circulating human resistin: resistin concentrations in normal subjects and patients with type 2 diabetes. Clin Chim Acta 2004; 339: 57-63
  • 36 Heilbronn LK, Rood J, Janderova L et al. Relationship between serum resistin concentrations and insulin resistance in nonobese, obese, and obese diabetic subjects. J Clin Endocrinol Metab 2004; 89: 1844-1848
  • 37 de Leon EB, Bortoluzzi A, Rucatti A et al. Neuromuscular electrical stimulation improves GLUT-4 and morphological characteristics of skeletal muscle in rats with heart failure. Acta Physiol (Oxf) 2011; 201: 265-273
  • 38 Ono T, Maekawa K, Sonoyama W et al. Gene expression profile of mouse masseter muscle after repetitive electrical stimulation. J Prosthodont Res 2010; 54: 36-41
  • 39 Gao J, Gulve EA, Holloszy JO. Contraction-induced increase in muscle insulin sensitivity: requirement for a serum factor. Am J Physiol 1994; 266: E186-E192
  • 40 Gulve EA, Cartee GD, Zierath JR et al. Reversal of enhanced muscle glucose transport after exercise: roles of insulin and glucose. Am J Physiol 1990; 259: E685-E691
  • 41 Richter EA, Ploug T, Galbo H. Increased muscle glucose uptake after exercise. No need for insulin during exercise. Diabetes 1985; 34: 1041-1048
  • 42 Adeghate E, Ponery AS, Wahab A. Effect of electrical field stimulation on insulin and glucagon secretion from the pancreas of normal and diabetic rats. Horm Metab Res 2001; 33: 281-289