RSS-Feed abonnieren
DOI: 10.1055/s-0032-1333468
The Changing Landscape of Diagnostic Services for Tuberculosis
Publikationsverlauf
Publikationsdatum:
04. März 2013 (online)
Abstract
During the last decade there has been a dramatic change in the laboratory approach to tuberculosis (TB) diagnosis in the developing world. This change began with the realization that acid-fast bacillus smear microscopy alone was totally inadequate to deal with the dual problems of human immunodeficiency virus (HIV)-associated TB and drug-resistant TB that threaten to undermine global progress in TB control. Subsequently, increased financial resources for TB laboratory services and the establishment of a systematic process for endorsement of new TB diagnostic tools and approaches by the World Health Organization (WHO) have led to rapid expansion of TB laboratory services and the availability of several new diagnostic tests that have been introduced. These include both commercial automated and noncommercial systems for phenotypic mycobacterial liquid culture and drug susceptibility testing, a simple and inexpensive test for mycobacterial species identification in culture isolates, light-emitting diode fluorescence microscopy, and rapid molecular methods for TB case detection and the diagnosis of drug-resistant TB. The latter methodologies that include line probe assays and an automated cartridge-based real-time polymerase chain reaction (PCR)-based test are being scaled up at an unprecedented pace and are truly revolutionizing the diagnosis of drug-resistant TB. On the other hand, little progress has been made in the quest for a true point-of-care test for TB. Fortunately, this is being addressed in several discovery initiatives that hopefully will provide impetus for the development of rapid, accurate TB diagnostics for the lowest level of the health system.
-
References
- 1 World Health Organization. Framework for Effective Tuberculosis Control. World Health Organization Tuberculosis Programme. Geneva, Switzerland: World Health Organization; 1994. . WHO/TB/94.179
- 2 Lipsky BA, Gates J, Tenover FC, Plorde JJ. Factors affecting the clinical value of microscopy for acid-fast bacilli. Rev Infect Dis 1984; 6 (2) 214-222
- 3 Hargreaves NJ, Kadzakumanja O, Whitty CJ, Salaniponi FM, Harries AD, Squire SB. ‘Smear-negative’ pulmonary tuberculosis in a DOTS programme: poor outcomes in an area of high HIV seroprevalence. Int J Tuberc Lung Dis 2001; 5 (9) 847-854
- 4 World Health Organization. Treatment of Tuberculosis. Guidelines for National Programmes. Geneva, Switzerland: World Health Organization; 2003. . WHO/CDS/TB/2003.312
- 5 Gandhi NR, Moll A, Sturm AW , et al. Extensively drug-resistant tuberculosis as a cause of death in patients co-infected with tuberculosis and HIV in a rural area of South Africa. Lancet 2006; 368 (9547) 1575-1580
- 6 WHO. WHO Global Task Force outlines measures to combat XDR-TB worldwide. Geneva, Switzerland, 2006. http://www.who.int/mediacentre/news/notes/2006/np29/en/print.html . Accessed September 3, 2012
- 7 WHO. Moving research findings into new WHO policies. http://www.who.int/tb/advisory_bodies/research_to_policy/en/ . Accessed September 25, 2012
- 8 Atkins D, Best D, Briss PA , et al; GRADE Working Group. Grading quality of evidence and strength of recommendations. BMJ 2004; 328 (7454) 1490
- 9 Schünemann HJ, Oxman AD, Brozek J , et al; GRADE Working Group. Grading quality of evidence and strength of recommendations for diagnostic tests and strategies. BMJ 2008; 336 (7653) 1106-1110
- 10 WHO Policy on reduction of number of smears for the diagnosis of pulmonary TB, 2007. Available at: http://www.who.int/tb/laboratory/policy_sputum_smearpositive_tb_case/en/index.html . Accessed January 11, 2013
- 11 WHO Policy on definition of a new sputum smear-positive TB case, 2007. Available at: http://www.who.int/tb/laboratory/policy_sputum_smearpositive_tb_case/en/index.html . Accessed January 11, 2013
- 12 Bonnet M, Ramsay A, Gagnidze L, Githui W, Guerin PJ, Varaine F. Reducing the number of sputum samples examined and thresholds for positivity: an opportunity to optimise smear microscopy. Int J Tuberc Lung Dis 2007; 11 (9) 953-958
- 13 Mase SR, Ramsay A, Ng V , et al. Yield of serial sputum specimen examinations in the diagnosis of pulmonary tuberculosis: a systematic review. Int J Tuberc Lung Dis 2007; 11 (5) 485-495
- 14 Rieder HL, Chiang CY, Rusen ID. A method to determine the utility of the third diagnostic and the second follow-up sputum smear examinations to diagnose tuberculosis cases and failures. Int J Tuberc Lung Dis 2005; 9 (4) 384-391
- 15 Cattamanchi A, Davis JL, Pai M, Huang L, Hopewell PC, Steingart KR. Does bleach processing increase the accuracy of sputum smear microscopy for diagnosing pulmonary tuberculosis?. J Clin Microbiol 2010; 48 (7) 2433-2439
- 16 WHO. WHO policy statement: same-day diagnosis of tuberculosis by microscopy. 2009. Available at: http://whqlibdoc.who.int/publications/2011/9789241501606_eng.pdf . Accessed January 12, 2013
- 17 WHO. Fluorescent light emitting diode (LED) microscopy for diagnosis of tuberculosis: policy statement. 2009. Available at: http://whqlibdoc.who.int/publications/2011/9789241501613_eng.pdf . Accessed January 12, 2013
- 18 Cuevas LE, Yassin MA, Al-Sonboli N , et al. A multi-country non-inferiority cluster randomized trial of frontloaded smear microscopy for the diagnosis of pulmonary tuberculosis. PLoS Med 2011; 8 (7) e1000443
- 19 Steingart KR, Henry M, Ng V , et al. Fluorescence versus conventional sputum smear microscopy for tuberculosis: a systematic review. Lancet Infect Dis 2006; 6 (9) 570-581
- 20 Hänscheid T. The future looks bright: low-cost fluorescent microscopes for detection of Mycobacterium tuberculosis and Coccidiae. Trans R Soc Trop Med Hyg 2008; 102 (6) 520-521
- 21 Anthony RM, Kolk AH, Kuijper S, Klatser PR. Light emitting diodes for auramine O fluorescence microscopic screening of Mycobacterium tuberculosis. Int J Tuberc Lung Dis 2006; 10 (9) 1060-1062
- 22 Minion J, Sohn H, Pai M. Light-emitting diode technologies for TB diagnosis: what is on the market?. Expert Rev Med Devices 2009; 6 (4) 341-345
- 23 Affolabi D, Torrea G, Odoun M , et al. Comparison of two LED fluorescence microscopy build-on modules for acid-fast smear microscopy. Int J Tuberc Lung Dis 2010; 14 (2) 160-164
- 24 Marais BJ, Brittle W, Painczyk K , et al. Use of light-emitting diode fluorescence microscopy to detect acid-fast bacilli in sputum. Clin Infect Dis 2008; 47 (2) 203-207
- 25 Miller AR, Davis GL, Oden ZM , et al. Portable, battery-operated, low-cost, bright field and fluorescence microscope. PLoS ONE 2010; 5 (8) e11890
- 26 Trusov A, Bumgarner R, Valijev R , et al. Comparison of Lumin LED fluorescent attachment, fluorescent microscopy and Ziehl-Neelsen for AFB diagnosis. Int J Tuberc Lung Dis 2009; 13 (7) 836-841
- 27 Van Deun A, Chonde TM, Gumusboga M, Rienthong S. Performance and acceptability of the FluoLED Easy module for tuberculosis fluorescence microscopy. Int J Tuberc Lung Dis 2008; 12 (9) 1009-1014
- 28 Minion J, Pai M, Ramsay A, Menzies D, Greenaway C. Comparison of LED and conventional fluorescence microscopy for detection of acid fast bacilli in a low-incidence setting. PLoS ONE 2011; 6 (7) e22495
- 29 Albert H, Manabe Y, Lukyamuzi G , et al. Performance of three LED-based fluorescence microscopy systems for detection of tuberculosis in Uganda. PLoS ONE 2010; 5 (12) e15206
- 30 Cuevas LE, Al-Sonboli N, Lawson L , et al. LED fluorescence microscopy for the diagnosis of pulmonary tuberculosis: a multi-country cross-sectional evaluation. PLoS Med 2011; 8 (7) e1001057
- 31 Lehman LG, Ngapmen Yamadji AL, Ngo Sack F, Bilong Bilong CF. The CyScope® fluorescence microscope, a reliable tool for tuberculosis diagnosis in resource-limited settings. Am J Trop Med Hyg 2010; 83 (4) 906-908
- 32 Cattamanchi A, Huang L, Worodria W , et al. Integrated strategies to optimize sputum smear microscopy: a prospective observational study. Am J Respir Crit Care Med 2011; 183 (4) 547-551
- 33 Whitelaw A, Peter J, Sohn H , et al. Comparative cost and performance of light-emitting diode microscopy in HIV-tuberculosis-co-infected patients. Eur Respir J 2011; 38 (6) 1393-1397
- 34 Bonnet M, Gagnidze L, Githui W , et al. Performance of LED-based fluorescence microscopy to diagnose tuberculosis in a peripheral health centre in Nairobi. PLoS ONE 2011; 6 (2) e17214
- 35 Shenai S, Minion J, Vadwai V , et al. Evaluation of light emitting diode-based fluorescence microscopy for the detection of mycobacteria in a tuberculosis-endemic region. Int J Tuberc Lung Dis 2011; 15 (4) 483-488
- 36 Turnbull ER, Kaunda K, Harris JB , et al. An evaluation of the performance and acceptability of three LED fluorescent microscopes in Zambia: lessons learnt for scale-up. PLoS ONE 2011; 6 (11) e27125
- 37 Minion J, Shenai S, Vadwai V , et al. Fading of auramine-stained mycobacterial smears and implications for external quality assurance. J Clin Microbiol 2011; 49 (5) 2024-2026
- 38 Yip CW, Chan MY, Cheung WF, Yu KW, Tang HS, Kam KM. Random blinded rechecking of sputum acid-fast bacilli smear using fluorescence microscopy: 8 years' experience. Int J Tuberc Lung Dis 2012; 16 (3) 398-401
- 39 GLI Laboratory toolbox. Standard operating procedures. Module 28. Rechecking acid-fast bacillus smears for external quality assessment. Available at: http://stoptb.org/wg/gli/documents.asp . Accessed January 11, 2013
- 40 Albert H, Ademun PJ, Lukyamuzi G , et al. Feasibility of magnetic bead technology for concentration of mycobacteria in sputum prior to fluorescence microscopy. BMC Infect Dis 2011; 11: 125
- 41 Fennelly KP, Morais CG, Hadad DJ, Vinhas S, Dietze R, Palaci M. The small membrane filter method of microscopy to diagnose pulmonary tuberculosis. J Clin Microbiol 2012; 50 (6) 2096-2099
- 42 Kent PT, Kubica GP , eds. Public Health Mycobacteriology: Guide for the Level III Laboratory. Washington, DC: US Department of Health and Human Services, Centers for Disease Control and Prevention; 1985
- 43 Alcaide F, Benítez MA, Escribà JM, Martín R. Evaluation of the BACTEC MGIT 960 and the MB/BacT systems for recovery of mycobacteria from clinical specimens and for species identification by DNA AccuProbe. J Clin Microbiol 2000; 38 (1) 398-401
- 44 Badak FZ, Kiska DL, Setterquist S, Hartley C, O'Connell MA, Hopfer RL. Comparison of mycobacteria growth indicator tube with BACTEC 460 for detection and recovery of mycobacteria from clinical specimens. J Clin Microbiol 1996; 34 (9) 2236-2239
- 45 Brunello F, Favari F, Fontana R. Comparison of the MB/BacT and BACTEC 460 TB systems for recovery of mycobacteria from various clinical specimens. J Clin Microbiol 1999; 37 (4) 1206-1209
- 46 Hanna BA, Ebrahimzadeh A, Elliott LB , et al. Multicenter evaluation of the BACTEC MGIT 960 system for recovery of mycobacteria. J Clin Microbiol 1999; 37 (3) 748-752
- 47 Huang TS, Chen CS, Lee SS, Huang WK, Liu YC. Comparison of the BACTEC MGIT 960 and BACTEC 460TB systems for detection of mycobacteria in clinical specimens. Ann Clin Lab Sci 2001; 31 (3) 279-283
- 48 Kanchana MV, Cheke D, Natyshak I, Connor B, Warner A, Martin T. Evaluation of the BACTEC MGIT 960 system for the recovery of mycobacteria. Diagn Microbiol Infect Dis 2000; 37 (1) 31-36
- 49 Leitritz L, Schubert S, Bücherl B, Masch A, Heesemann J, Roggenkamp A. Evaluation of BACTEC MGIT 960 and BACTEC 460TB systems for recovery of mycobacteria from clinical specimens of a university hospital with low incidence of tuberculosis. J Clin Microbiol 2001; 39 (10) 3764-3767
- 50 Lu D, Heeren B, Dunne WM. Comparison of the Automated Mycobacteria Growth Indicator Tube System (BACTEC 960/MGIT) with Löwenstein-Jensen medium for recovery of mycobacteria from clinical specimens. Am J Clin Pathol 2002; 118 (4) 542-545
- 51 Palacios JJ, Ferro J, Ruiz Palma N , et al. Fully automated liquid culture system compared with Löwenstein-Jensen solid medium for rapid recovery of mycobacteria from clinical samples. Eur J Clin Microbiol Infect Dis 1999; 18 (4) 265-273
- 52 Pfyffer GE, Welscher HM, Kissling P , et al. Comparison of the Mycobacteria Growth Indicator Tube (MGIT) with radiometric and solid culture for recovery of acid-fast bacilli. J Clin Microbiol 1997; 35 (2) 364-368
- 53 Piersimoni C, Scarparo C, Callegaro A , et al. Comparison of MB/Bact alert 3D system with radiometric BACTEC system and Löwenstein-Jensen medium for recovery and identification of mycobacteria from clinical specimens: a multicenter study. J Clin Microbiol 2001; 39 (2) 651-657
- 54 Pinheiro MD, Ribeiro MM. Comparison of the Bactec 460TB system and the Bactec MGIT 960 system in recovery of mycobacteria from clinical specimens. Clin Microbiol Infect 2000; 6 (3) 171-173
- 55 Rohner P, Ninet B, Benri AM, Auckenthaler R. Evaluation of the Bactec 960 automated nonradiometric system for isolation of mycobacteria from clinical specimens. Eur J Clin Microbiol Infect Dis 2000; 19 (9) 715-717
- 56 Scarparo C, Piccoli P, Rigon A, Ruggiero G, Ricordi P, Piersimoni C. Evaluation of the BACTEC MGIT 960 in comparison with BACTEC 460 TB for detection and recovery of mycobacteria from clinical specimens. Diagn Microbiol Infect Dis 2002; 44 (2) 157-161
- 57 Somoskövi A, Ködmön C, Lantos A , et al. Comparison of recoveries of mycobacterium tuberculosis using the automated BACTEC MGIT 960 system, the BACTEC 460 TB system, and Löwenstein-Jensen medium. J Clin Microbiol 2000; 38 (6) 2395-2397
- 58 Somoskövi A, Magyar P. Comparison of the mycobacteria growth indicator tube with MB redox, Löwenstein-Jensen, and Middlebrook 7H11 media for recovery of mycobacteria in clinical specimens. J Clin Microbiol 1999; 37 (5) 1366-1369
- 59 Tortoli E, Cichero P, Piersimoni C, Simonetti MT, Gesu G, Nista D. Use of BACTEC MGIT 960 for recovery of mycobacteria from clinical specimens: multicenter study. J Clin Microbiol 1999; 37 (11) 3578-3582
- 60 Dinnes J, Deeks J, Kunst H , et al. A systematic review of rapid diagnostic tests for the detection of tuberculosis infection. Health Technol Assess 2007; 11 (3) 1-196
- 61 Adjers-Koskela K, Katila ML. Susceptibility testing with the manual mycobacteria growth indicator tube (MGIT) and the MGIT 960 system provides rapid and reliable verification of multidrug-resistant tuberculosis. J Clin Microbiol 2003; 41 (3) 1235-1239
- 62 Ardito F, Posteraro B, Sanguinetti M, Zanetti S, Fadda G. Evaluation of BACTEC Mycobacteria Growth Indicator Tube (MGIT 960) automated system for drug susceptibility testing of Mycobacterium tuberculosis. J Clin Microbiol 2001; 39 (12) 4440-4444
- 63 Bemer P, Palicova F, Rüsch-Gerdes S, Drugeon HB, Pfyffer GE. Multicenter evaluation of fully automated BACTEC Mycobacteria Growth Indicator Tube 960 system for susceptibility testing of Mycobacterium tuberculosis. J Clin Microbiol 2002; 40 (1) 150-154
- 64 Bergmann JS, Fish G, Woods GL. Evaluation of the BBL MGIT (Mycobacterial growth indicator tube) AST SIRE system for antimycobacterial susceptibility testing of Mycobacterium tuberculosis to 4 primary antituberculous drugs. Arch Pathol Lab Med 2000; 124 (1) 82-86
- 65 Goloubeva V, Lecocq M, Lassowsky P, Matthys F, Portaels F, Bastian I. Evaluation of mycobacteria growth indicator tube for direct and indirect drug susceptibility testing of Mycobacterium tuberculosis from respiratory specimens in a Siberian prison hospital. J Clin Microbiol 2001; 39 (4) 1501-1505
- 66 Kontos F, Maniati M, Costopoulos C , et al. Evaluation of the fully automated Bactec MGIT 960 system for the susceptibility testing of Mycobacterium tuberculosis to first-line drugs: a multicenter study. J Microbiol Methods 2004; 56 (2) 291-294
- 67 Marttila HJ, Marjamäki M, Viljanen MK, Soini H. Performance of BACTEC 960 Mycobacteria growth indicator tube in the susceptibility testing of genetically characterized Mycobacterium tuberculosis isolates. Eur J Clin Microbiol Infect Dis 2003; 22 (12) 757-759
- 68 Tortoli E, Benedetti M, Fontanelli A, Simonetti MT. Evaluation of automated BACTEC MGIT 960 system for testing susceptibility of Mycobacterium tuberculosis to four major antituberculous drugs: comparison with the radiometric BACTEC 460TB method and the agar plate method of proportion. J Clin Microbiol 2002; 40 (2) 607-610
- 69 WHO. Use of liquid TB culture and drug susceptibility testing (DST) in low and medium income settings. Summary report of the Expert Group Meeting on liquid culture media, Geneva, Switzerland, 2007. http://www.who.int/tb/laboratory/use_of_liquid_tb_culture_summary_report.pdf . Accessed September 23, 2012
- 70 World Health Organization. Noncommercial culture and drug-susceptibility testing methods for screening patients at risk of multidrug-resistant tuberculosis. Policy statement. Geneva, Switzerland: World Health Organization; 2011. . WHO/HTM/TB/2011.9
- 71 Moore DA, Evans CA, Gilman RH , et al. Microscopic-observation drug-susceptibility assay for the diagnosis of TB. N Engl J Med 2006; 355 (15) 1539-1550
- 72 Leung E, Minion J, Benedetti A, Pai M, Menzies D. Microcolony culture techniques for tuberculosis diagnosis: a systematic review. Int J Tuberc Lung Dis 2012; 16 (1) 16-23, i–iii i–iii
- 73 Palomino JC, Portaels F. Simple procedure for drug susceptibility testing of Mycobacterium tuberculosis using a commercial colorimetic assay. Eur J Clin Microbiol Infect Dis 1999; 18 (5) 380-383
- 74 Martin A, Portaels F, Palomino JC. Colorimetric redox-indicator methods for the rapid detection of multidrug resistance in Mycobacterium tuberculosis: a systematic review and meta-analysis. J Antimicrob Chemother 2007; 59 (2) 175-183
- 75 Angeby KA, Klintz L, Hoffner SE. Rapid and inexpensive drug susceptibility testing of Mycobacterium tuberculosis with a nitrate reductase assay. J Clin Microbiol 2002; 40 (2) 553-555
- 76 Martin A, Panaiotov S, Portaels F, Hoffner S, Palomino JC, Angeby K. The nitrate reductase assay for the rapid detection of isoniazid and rifampicin resistance in Mycobacterium tuberculosis: a systematic review and meta-analysis. J Antimicrob Chemother 2008; 62 (1) 56-64
- 77 Roberts GD, Böttger EC, Stockman L. Methods for the rapid identification of mycobacterial species. Clin Lab Med 1996; 16 (3) 603-615
- 78 Abe C, Hirano K, Tomiyama T. Simple and rapid identification of the Mycobacterium tuberculosis complex by immunochromatographic assay using anti-MPB64 monoclonal antibodies. J Clin Microbiol 1999; 37 (11) 3693-3697
- 79 Abe K, Hara M. [Improvement for identification of Mycobacterium tuberculosis complex by immunochromatographic assay anti-MPB 64 monoclonal antibodies with “H2O2” addition trial on blood culture samples]. Rinsho Byori 2002; 50 (11) 1067-1071
- 80 Hasegawa N, Miura T, Ishii K , et al. New simple and rapid test for culture confirmation of Mycobacterium tuberculosis complex: a multicenter study. J Clin Microbiol 2002; 40 (3) 908-912
- 81 Hillemann D, Rüsch-Gerdes S, Richter E. Application of the Capilia TB assay for culture confirmation of Mycobacterium tuberculosis complex isolates. Int J Tuberc Lung Dis 2005; 9 (12) 1409-1411
- 82 Hirano K, Aono A, Takahashi M, Abe C. Mutations including IS6110 insertion in the gene encoding the MPB64 protein of Capilia TB-negative Mycobacterium tuberculosis isolates. J Clin Microbiol 2004; 42 (1) 390-392
- 83 WHO. Molecular line probe assays for rapid screening of patients at risk of multidrug-resistant tuberculosis (MDR TB). 2008. http://www.who.int/tb/features_archive/policy_statement.pdf . Accessed September 24, 2012
- 84 Ling DI, Zwerling AA, Pai M. GenoType MTBDR assays for the diagnosis of multidrug-resistant tuberculosis: a meta-analysis. Eur Respir J 2008; 32 (5) 1165-1174
- 85 Ling DI, Zwerling AA, Pai M. Rapid diagnosis of drug-resistant TB using line probe assays: from evidence to policy. Expert Rev Respir Med 2008; 2 (5) 583-588
- 86 Morgan M, Kalantri S, Flores L, Pai M. A commercial line probe assay for the rapid detection of rifampicin resistance in Mycobacterium tuberculosis: a systematic review and meta-analysis. BMC Infect Dis 2005; 5: 62
- 87 Barnard M, Albert H, Coetzee G, O'Brien R, Bosman ME. Rapid molecular screening for multidrug-resistant tuberculosis in a high-volume public health laboratory in South Africa. Am J Respir Crit Care Med 2008; 177 (7) 787-792
- 88 Crudu V, Stratan E, Romancenco E, Allerheiligen V, Hillemann A, Moraru N. First evaluation of an improved assay for molecular genetic detection of tuberculosis as well as rifampin and isoniazid resistances. J Clin Microbiol 2012; 50 (4) 1264-1269
- 89 Barnard M, van Pittius NG, van Helden PD , et al. The diagnostic performance of Genotype® MTBDRplus Version 2 line probe assay is equivalent to the Xpert®MTB/RIF assay. J Clin Microbiol 2012; 50: 3712-3716
- 90 Banada PP, Sivasubramani SK, Blakemore R , et al. Containment of bioaerosol infection risk by the Xpert MTB/RIF assay and its applicability to point-of-care settings. J Clin Microbiol 2010; 48 (10) 3551-3557
- 91 Blakemore R, Story E, Helb D , et al. Evaluation of the analytical performance of the Xpert MTB/RIF assay. J Clin Microbiol 2010; 48 (7) 2495-2501
- 92 Helb D, Jones M, Story E , et al. Rapid detection of Mycobacterium tuberculosis and rifampin resistance by use of on-demand, near-patient technology. J Clin Microbiol 2010; 48 (1) 229-237
- 93 Blakemore R, Nabeta P, Davidow AL , et al. A multisite assessment of the quantitative capabilities of the Xpert MTB/RIF assay. Am J Respir Crit Care Med 2011; 184 (9) 1076-1084
- 94 WHO. English-WHO policy statement: automated real-time nucleic acid amplification technology for rapid and simultaneous detection of tuberculosis and rifampicin resistance: Xpert MTB/RIF assay. 2010. Available at: http://whqlibdoc.who.int/publications/2011/9789241501545_eng.pdf . Accessed January 12, 2013
- 95 Boehme CC, Nabeta P, Hillemann D , et al. Rapid molecular detection of tuberculosis and rifampin resistance. N Engl J Med 2010; 363 (11) 1005-1015
- 96 Hillemann D, Rüsch-Gerdes S, Boehme C, Richter E. Rapid molecular detection of extrapulmonary tuberculosis by the automated GeneXpert MTB/RIF system. J Clin Microbiol 2011; 49 (4) 1202-1205
- 97 Nicol MP, Workman L, Isaacs W , et al. Accuracy of the Xpert MTB/RIF test for the diagnosis of pulmonary tuberculosis in children admitted to hospital in Cape Town, South Africa: a descriptive study. Lancet Infect Dis 2011; 11 (11) 819-824
- 98 Rachow A, Zumla A, Heinrich N , et al. Rapid and accurate detection of Mycobacterium tuberculosis in sputum samples by Cepheid Xpert MTB/RIF assay—a clinical validation study. PLoS ONE 2011; 6 (6) e20458
- 99 Vadwai V, Boehme C, Nabeta P, Shetty A, Alland D, Rodrigues C. Xpert MTB/RIF: a new pillar in diagnosis of extrapulmonary tuberculosis?. J Clin Microbiol 2011; 49 (7) 2540-2545
- 100 Dorman SE, Chihota VN, Lewis JJ , et al. Performance characteristics of the Cepheid Xpert MTB/RIF test in a tuberculosis prevalence survey. PLoS ONE 2012; 7 (8) e43307
- 101 Boehme CC, Nicol MP, Nabeta P , et al. Feasibility, diagnostic accuracy, and effectiveness of decentralised use of the Xpert MTB/RIF test for diagnosis of tuberculosis and multidrug resistance: a multicentre implementation study. Lancet 2011; 377 (9776) 1495-1505
- 102 Chang K, Lu W, Wang J , et al. Rapid and effective diagnosis of tuberculosis and rifampicin resistance with Xpert MTB/RIF assay: a meta-analysis. J Infect 2012; 64 (6) 580-588
- 103 Steingart KR, Sohn H, Schiller I , et al. Xpert® MTB/RIF assay for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database of Systematic Reviews 2013; ; Issue 1. Art. No.: CD009593. DOI: 10.1002/14651858.CD009593.pub2
- 104 Balcells ME, García P, Chanqueo L , et al. Rapid molecular detection of pulmonary tuberculosis in HIV-infected patients in Santiago, Chile. Int J Tuberc Lung Dis 2012; 16 (10) 1349-1353
- 105 Carriquiry G, Otero L, González-Lagos E , et al. A Diagnostic Accuracy Study of Xpert®MTB/RIF in HIV-Positive Patients with High Clinical Suspicion of Pulmonary Tuberculosis in Lima, Peru. PLoS ONE 2012; 7 (9) e44626
- 106 Lawn SD, Brooks SV, Kranzer K , et al. Screening for HIV-associated tuberculosis and rifampicin resistance before antiretroviral therapy using the Xpert MTB/RIF assay: a prospective study. PLoS Med 2011; 8 (7) e1001067
- 107 O'Grady J, Bates M, Chilukutu L , et al. Evaluation of the Xpert MTB/RIF assay at a tertiary care referral hospital in a setting where tuberculosis and HIV infection are highly endemic. Clin Infect Dis 2012; 55 (9) 1171-1178
- 108 Marlowe EM, Novak-Weekley SM, Cumpio J , et al. Evaluation of the Cepheid Xpert MTB/RIF assay for direct detection of Mycobacterium tuberculosis complex in respiratory specimens. J Clin Microbiol 2011; 49 (4) 1621-1623
- 109 Moure R, Muñoz L, Torres M, Santin M, Martín R, Alcaide F. Rapid detection of Mycobacterium tuberculosis complex and rifampin resistance in smear-negative clinical samples by use of an integrated real-time PCR method. J Clin Microbiol 2011; 49 (3) 1137-1139
- 110 Scott LE, McCarthy K, Gous N , et al. Comparison of Xpert MTB/RIF with other nucleic acid technologies for diagnosing pulmonary tuberculosis in a high HIV prevalence setting: a prospective study. PLoS Med 2011; 8 (7) e1001061
- 111 Theron G, Peter J, van Zyl-Smit R , et al. Evaluation of the Xpert MTB/RIF assay for the diagnosis of pulmonary tuberculosis in a high HIV prevalence setting. Am J Respir Crit Care Med 2011; 184 (1) 132-140
- 112 Bowles EC, Freyée B, van Ingen J, Mulder B, Boeree MJ, van Soolingen D. Xpert MTB/RIF®, a novel automated polymerase chain reaction-based tool for the diagnosis of tuberculosis. Int J Tuberc Lung Dis 2011; 15 (7) 988-989
- 113 Ioannidis P, Papaventsis D, Karabela S , et al. Cepheid GeneXpert MTB/RIF assay for Mycobacterium tuberculosis detection and rifampin resistance identification in patients with substantial clinical indications of tuberculosis and smear-negative microscopy results. J Clin Microbiol 2011; 49 (8) 3068-3070
- 114 Van Rie A, Mellet K, John MA , et al. False-positive rifampicin resistance on Xpert® MTB/RIF: case report and clinical implications. Int J Tuberc Lung Dis 2012; 16 (2) 206-208
- 115 Williamson DA, Basu I, Bower J, Freeman JT, Henderson G, Roberts SA. An evaluation of the Xpert MTB/RIF assay and detection of false-positive rifampicin resistance in Mycobacterium tuberculosis. Diagn Microbiol Infect Dis 2012; 74 (2) 207-209
- 116 WHO. FIND report on Performance of Xpert MTB/RIF Version G4 assay. 2011. http://www.stoptb.org/wg/gli/assets/documents/map/findg4cartridge.pdf . Accessed January 12, 2013
- 117 Kim SY, Kim H, Kim SY , et al. The Xpert® MTB/RIF assay evaluation in South Korea, a country with an intermediate tuberculosis burden. Int J Tuberc Lung Dis 2012; 16 (11) 1471-1476
- 118 Connell TG, Zar HJ, Nicol MP. Advances in the diagnosis of pulmonary tuberculosis in HIV-infected and HIV-uninfected children. J Infect Dis 2011; 204 (Suppl. 04) S1151-S1158
- 119 Zar HJ, Workman L, Isaacs W , et al. Rapid molecular diagnosis of pulmonary tuberculosis in children using nasopharyngeal specimens. Clin Infect Dis 2012; 55 (8) 1088-1095
- 120 Rachow A, Clowes P, Saathoff E , et al. Increased and expedited case detection by Xpert MTB/RIF assay in childhood tuberculosis: a prospective cohort study. Clin Infect Dis 2012; 54 (10) 1388-1396
- 121 Tortoli E, Russo C, Piersimoni C , et al. Clinical validation of Xpert MTB/RIF for the diagnosis of extrapulmonary tuberculosis. Eur Respir J 2012; 40 (2) 442-447
- 122 Ligthelm LJ, Nicol MP, Hoek KG , et al. Xpert MTB/RIF for rapid diagnosis of tuberculous lymphadenitis from fine-needle-aspiration biopsy specimens. J Clin Microbiol 2011; 49 (11) 3967-3970
- 123 European Centre for Disease Prevention and Control. WHO Regional Office for Europe. Tuberculosis surveillance in Europe 2009. Stockholm: European Centre for Disease Prevention and Control; 2011
- 124 Sharma SK, Mohan A. Extrapulmonary tuberculosis. Indian J Med Res 2004; 120 (4) 316-353
- 125 Snider Jr DE, Roper WL. The new tuberculosis. N Engl J Med 1992; 326 (10) 703-705
- 126 Weir MR, Thornton GF. Extrapulmonary tuberculosis: experience of a community hospital and review of the literature. Am J Med 1985; 79 (4) 467-478
- 127 Lado Lado FL, Barrio Gómez E, Carballo Arceo E, Cabarcos Ortíz de Barrón A. Clinical presentation of tuberculosis and the degree of immunodeficiency in patients with HIV infection. Scand J Infect Dis 1999; 31 (4) 387-391
- 128 Raviglione MC, Narain JP, Kochi A. HIV-associated tuberculosis in developing countries: clinical features, diagnosis, and treatment. Bull World Health Organ 1992; 70 (4) 515-526
- 129 Theuer CP, Hopewell PC, Elias D, Schecter GF, Rutherford GW, Chaisson RE. Human immunodeficiency virus infection in tuberculosis patients. J Infect Dis 1990; 162 (1) 8-12
- 130 Armand S, Vanhuls P, Delcroix G, Courcol R, Lemaître N. Comparison of the Xpert MTB/RIF test with an IS6110-TaqMan real-time PCR assay for direct detection of Mycobacterium tuberculosis in respiratory and nonrespiratory specimens. J Clin Microbiol 2011; 49 (5) 1772-1776
- 131 Causse M, Ruiz P, Gutiérrez-Aroca JB, Casal M. Comparison of two molecular methods for rapid diagnosis of extrapulmonary tuberculosis. J Clin Microbiol 2011; 49 (8) 3065-3067
- 132 Friedrich SO, von Groote-Bidlingmaier F, Diacon AH. Xpert MTB/RIF assay for diagnosis of pleural tuberculosis. J Clin Microbiol 2011; 49 (12) 4341-4342
- 133 Hanif SN, Eldeen HS, Ahmad S, Mokaddas E. GeneXpert® MTB/RIF for rapid detection of Mycobacterium tuberculosis in pulmonary and extra-pulmonary samples. Int J Tuberc Lung Dis 2011; 15 (9) 1274-1275
- 134 Lawn SD, Kerkhoff AD, Vogt M, Wood R. High diagnostic yield of tuberculosis from screening urine samples from HIV-infected patients with advanced immunodeficiency using the Xpert MTB/RIF assay. J Acquir Immune Defic Syndr 2012; 60 (3) 289-294
- 135 Malbruny B, Le Marrec G, Courageux K, Leclercq R, Cattoir V. Rapid and efficient detection of Mycobacterium tuberculosis in respiratory and non-respiratory samples. Int J Tuberc Lung Dis 2011; 15 (4) 553-555
- 136 Moure R, Martín R, Alcaide F. Effectiveness of an integrated real-time PCR method for detection of the Mycobacterium tuberculosis complex in smear-negative extrapulmonary samples in an area of low tuberculosis prevalence. J Clin Microbiol 2012; 50 (2) 513-515
- 137 Teo J, Jureen R, Chiang D, Chan D, Lin R. Comparison of two nucleic acid amplification assays, the Xpert MTB/RIF assay and the amplified Mycobacterium Tuberculosis Direct assay, for detection of Mycobacterium tuberculosis in respiratory and nonrespiratory specimens. J Clin Microbiol 2011; 49 (10) 3659-3662
- 138 Zeka AN, Tasbakan S, Cavusoglu C. Evaluation of the GeneXpert MTB/RIF assay for rapid diagnosis of tuberculosis and detection of rifampin resistance in pulmonary and extrapulmonary specimens. J Clin Microbiol 2011; 49 (12) 4138-4141
- 139 Miller MB, Popowitch EB, Backlund MG, Ager EP. Performance of Xpert MTB/RIF RUO assay and IS6110 real-time PCR for Mycobacterium tuberculosis detection in clinical samples. J Clin Microbiol 2011; 49 (10) 3458-3462
- 140 Lawn SD, Zumla AI. Diagnosis of extrapulmonary tuberculosis using the Xpert(®) MTB/RIF assay. Expert Rev Anti Infect Ther 2012; 10 (6) 631-635
- 141 Trébucq A, Enarson DA, Chiang CY , et al. Xpert® MTB/RIF for national tuberculosis programmes in low-income countries: when, where and how?. Int J Tuberc Lung Dis 2011; 15 (12) 1567-1572
- 142 Van Rie A, Page-Shipp L, Scott L, Sanne I, Stevens W. Xpert(®) MTB/RIF for point-of-care diagnosis of TB in high-HIV burden, resource-limited countries: hype or hope?. Expert Rev Mol Diagn 2010; 10 (7) 937-946
- 143 Kennedy N, Gillespie SH, Saruni AO , et al. Polymerase chain reaction for assessing treatment response in patients with pulmonary tuberculosis. J Infect Dis 1994; 170 (3) 713-716
- 144 Levée G, Glaziou P, Gicquel B, Chanteau S. Follow-up of tuberculosis patients undergoing standard anti-tuberculosis chemotherapy by using a polymerase chain reaction. Res Microbiol 1994; 145 (1) 5-8
- 145 Miotto P, Bigoni S, Migliori GB, Matteelli A, Cirillo DM. Early tuberculosis treatment monitoring by Xpert(R) MTB/RIF. Eur Respir J 2012; 39 (5) 1269-1271
- 146 Floyd K, Pantoja A, Glaziou P. World Health Organization; Xpert MTB/RIF in the Global Plan 2011–2015: what will it cost? World Health Organization global consultation on Xpert implementation [presentation]. Geneva, Switzerland: World Health Organization; 2010
- 147 Vassall A, van Kampen S, Sohn H , et al. Rapid diagnosis of tuberculosis with the Xpert MTB/RIF assay in high burden countries: a cost-effectiveness analysis. PLoS Med 2011; 8 (11) e1001120
- 148 Abimbola TO, Marston BJ, Date AA, Blandford JM, Sangrujee N, Wiktor SZ. Cost-effectiveness of tuberculosis diagnostic strategies to reduce early mortality among persons with advanced HIV infection initiating antiretroviral therapy. J Acquir Immune Defic Syndr 2012; 60 (1) e1-e7
- 149 Andrews JR, Lawn SD, Rusu C , et al. The cost-effectiveness of routine tuberculosis screening with Xpert MTB/RIF prior to initiation of antiretroviral therapy: a model-based analysis. AIDS 2012; 26 (8) 987-995
- 150 Schnippel K, Meyer-Rath G, Long L , et al. Scaling up Xpert MTB/RIF technology: the costs of laboratory- vs. clinic-based roll-out in South Africa. Trop Med Int Health 2012; 17 (9) 1142-1151
- 151 Meyer-Rath G, Schnippel K, Long L , et al. The impact and cost of scaling up GeneXpert MTB/RIF in South Africa. PLoS ONE 2012; 7 (5) e36966
- 152 Lawn SD, Harries AD, Meintjes G, Getahun H, Havlir DV, Wood R. Reducing deaths from tuberculosis in antiretroviral treatment programmes in sub-Saharan Africa. AIDS 2012; 26 (17) 2121-2133
- 153 Lawn SD, Kerkhoff AD, Vogt M, Ghebrekristos Y, Whitelaw A, Wood R. Characteristics and early outcomes of patients with Xpert MTB/RIF-negative pulmonary tuberculosis diagnosed during screening before antiretroviral therapy. Clin Infect Dis 2012; 54 (8) 1071-1079
- 154 Steingart KR, Ramsay A, Dowdy DW, Pai M. Serological tests for the diagnosis of active tuberculosis: relevance for India. Indian J Med Res 2012; 135 (5) 695-702
- 155 WHO/TDR. Laboratory-based evaluation of 19 commercially available rapid diagnostic tests for tuberculosis. Diagnostics Evaluation Series, 2. 2008. http://www.who.int/tdr/publications/tdr-research-publications/diagnostics-evaluation-2/en/index.html . Accessed September 24, 2012
- 156 World Health Organization. Commercial serologic tests for tuberculosis: policy statement. Geneva, Switzerland: World Health Organization; 2011. . WHO/HTM/TB/2011.5
- 157 Kounteya S . Ban in inaccurate tests to diagnose TB. Times of India, 2012 http://articles.timesofindia.indiatimes.com/2012-06-20/india/32334338_1_tb-detection-tb-diagnosis-tb-cases . Accessed September 24, 2012.
- 158 Schluger N. Advances in the diagnosis of latent tuberculosis infection. Semin Respir Crit Care Med 2012; 34 (1) 60-66
- 159 World Health Organization. Use of tuberculosis interferon-gamma release assays (IGRAs) in low- and middle-income countries: policy statement: Geneva, Switzerland: World Health Organization; 2011. . WHO/HTM/TB/2011.18
- 160 Hillemann D, Rüsch-Gerdes S, Richter E. Feasibility of the GenoType MTBDRsl assay for fluoroquinolone, amikacin-capreomycin, and ethambutol resistance testing of Mycobacterium tuberculosis strains and clinical specimens. J Clin Microbiol 2009; 47 (6) 1767-1772
- 161 Brossier F, Veziris N, Aubry A, Jarlier V, Sougakoff W. Detection by GenoType MTBDRsl test of complex mechanisms of resistance to second-line drugs and ethambutol in multidrug-resistant Mycobacterium tuberculosis complex isolates. J Clin Microbiol 2010; 48 (5) 1683-1689
- 162 Huang WL, Chi TL, Wu MH, Jou R. Performance assessment of the GenoType MTBDRsl test and DNA sequencing for detection of second-line and ethambutol drug resistance among patients infected with multidrug-resistant Mycobacterium tuberculosis. J Clin Microbiol 2011; 49 (7) 2502-2508
- 163 Ignatyeva O, Kontsevaya I, Kovalyov A , et al. Detection of resistance to second-line antituberculosis drugs by use of the genotype MTBDRsl assay: a multicenter evaluation and feasibility study. J Clin Microbiol 2012; 50 (5) 1593-1597
- 164 Kiet VS, Lan NT, An DD , et al. Evaluation of the MTBDRsl test for detection of second-line-drug resistance in Mycobacterium tuberculosis. J Clin Microbiol 2010; 48 (8) 2934-2939
- 165 Said HM, Kock MM, Ismail NA , et al. Evaluation of the GenoType® MTBDRsl assay for susceptibility testing of second-line anti-tuberculosis drugs. Int J Tuberc Lung Dis 2012; 16 (1) 104-109
- 166 Iwamoto T, Sonobe T, Hayashi K. Loop-mediated isothermal amplification for direct detection of Mycobacterium tuberculosis complex, M. avium, and M. intracellulare in sputum samples. J Clin Microbiol 2003; 41 (6) 2616-2622
- 167 Mori Y, Nagamine K, Tomita N, Notomi T. Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem Biophys Res Commun 2001; 289 (1) 150-154
- 168 Notomi T, Okayama H, Masubuchi H , et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 2000; 28 (12) E63
- 169 Francois P, Tangomo M, Hibbs J , et al. Robustness of a loop-mediated isothermal amplification reaction for diagnostic applications. FEMS Immunol Med Microbiol 2011; 62 (1) 41-48
- 170 Boehme CC, Nabeta P, Henostroza G , et al. Operational feasibility of using loop-mediated isothermal amplification for diagnosis of pulmonary tuberculosis in microscopy centers of developing countries. J Clin Microbiol 2007; 45 (6) 1936-1940
- 171 Mitarai S, Okumura M, Toyota E , et al. Evaluation of a simple loop-mediated isothermal amplification test kit for the diagnosis of tuberculosis. Int J Tuberc Lung Dis 2011; 15 (9) 1211-1217 , i
- 172 Aryan E, Makvandi M, Farajzadeh A , et al. A novel and more sensitive loop-mediated isothermal amplification assay targeting IS6110 for detection of Mycobacterium tuberculosis complex. Microbiol Res 2010; 165 (3) 211-220
- 173 Geojith G, Dhanasekaran S, Chandran SP, Kenneth J. Efficacy of loop mediated isothermal amplification (LAMP) assay for the laboratory identification of Mycobacterium tuberculosis isolates in a resource limited setting. J Microbiol Methods 2011; 84 (1) 71-73
- 174 George G, Mony P, Kenneth J. Comparison of the efficacies of loop-mediated isothermal amplification, fluorescence smear microscopy and culture for the diagnosis of tuberculosis. PLoS ONE 2011; 6 (6) e21007
- 175 Lee MF, Chen YH, Peng CF. Evaluation of reverse transcription loop-mediated isothermal amplification in conjunction with ELISA-hybridization assay for molecular detection of Mycobacterium tuberculosis. J Microbiol Methods 2009; 76 (2) 174-180
- 176 Neonakis IK, Spandidos DA, Petinaki E. Use of loop-mediated isothermal amplification of DNA for the rapid detection of Mycobacterium tuberculosis in clinical specimens. Eur J Clin Microbiol Infect Dis 2011; 30 (8) 937-942
- 177 Pandey BD, Poudel A, Yoda T , et al. Development of an in-house loop-mediated isothermal amplification (LAMP) assay for detection of Mycobacterium tuberculosis and evaluation in sputum samples of Nepalese patients. J Med Microbiol 2008; 57 (Pt 4) 439-443
- 178 Poudel A, Pandey BD, Lekhak B, Rijal B, Sapkota BR, Suzuki Y. Clinical profiling and use of loop-mediated isothermal amplification assay for rapid detection of Mycobacterium tuberculosis from sputum. Kathmandu Univ Med J (KUMJ) 2009; 7 (26) 109-114 (KUMJ)
- 179 Zhu RY, Zhang KX, Zhao MQ , et al. Use of visual loop-mediated isotheral amplification of rimM sequence for rapid detection of Mycobacterium tuberculosis and Mycobacterium bovis. J Microbiol Methods 2009; 78 (3) 339-343
- 180 Pai NP, Vadnais C, Denkinger C, Engel N, Pai M. Point-of-Care Testing for Infectious Diseases: Diversity, Complexity, and Barriers in Low- And Middle-Income Countries. PLoS Med 2012; 9 (9) e1001306
- 181 Pai NP, Pai M. Point-of-care diagnostics for HIV and tuberculosis: landscape, pipeline, and unmet needs. Discov Med 2012; 13 (68) 35-45
- 182 Denkinger CM, Pai M. Point-of-care tuberculosis diagnosis: are we there yet?. Lancet Infect Dis 2012; 12 (3) 169-170