RSS-Feed abonnieren
DOI: 10.1055/s-0033-1335731
Poststroke-Bipolar affektive Erkrankung
Poststroke-Bipolar Affective DisorderPublikationsverlauf
Publikationsdatum:
12. August 2013 (online)
Zusammenfassung
Eine junge Frau im Alter von 23 Jahren erleidet wenige Wochen nach einem Stammganglieninfarkt rechts (Globus pallidus) mit Hemiplegie links erstmalig eine ausgeprägte Manie mit Selbstgefährdung. Als Risikofaktor konnte nur die Einnahme von Kontrazeptiva festgestellt werden. Im Verlauf entwickelt sich auch bei der Mutter eine depressive Erkrankung, sodass eine gewisse genetische Prädisposition für affektive Störungen möglich ist, welche jedoch nicht allein den Ausbruch der Manie erklären würde. Ein Zusammenhang mit dem rechtsseitigen Stammganglieninfarkt und dem Ausbruch der bipolar affektiven Störung ist in der Literatur beschrieben. Auch werden vaskuläre bzw. inflammatorische Risikofaktoren in Synopsis mit der Ätiopathogenese der bipolar affektiven Störung in diesem Case-Report genauer diskutiert.
Abstract
A few weeks after suffering from a basal ganglia infarction (globus pallidus) with left-sided hemiplegia, a 23-year-old woman exhibited for the first time a pronounced mania with self-endangerment. The use of oral contraceptives was the only determinable risk factor. During the further course, the mother also developed a depressive disorder. Thus a certain genetic predisposition for affective disorders may be relevant, although this would not explain the outbreak by itself. An association between the right-sided basal ganglia infarction and the occurrence of a bipolar affective disorder has been described in the literature. Vascular or, respectively, inflammatory risk factors in synopsis with the aetiopathogenesis of bipolar affective disorders are also discussed in depth in this case report.
-
Literatur
- 1 Berthier ML, Kulisevsky J, Gironell A et al. Poststroke bipolar affective disorder: clinical subtypes, concurrent movement disorders, and anatomical correlates. J Neuropsychiatry Clin Neurosci 1996; 8 (02) 160-167
- 2 Starkstein SE, Fedoroff P, Berthier ML et al. Manic-depressive and pure manic states after brain lesions. Biol Psychiatry 1991; 29 (02) 149-158
- 3 Starkstein SE, Mayberg HS, Berthier ML et al. Mania after brain injury: neuroradiological and metabolic dings. Ann Neurol 1990; 27 (06) 652-659
- 4 Rothenhäusler B. Kompendium praktische Psychiatrie. Springer; 2007
- 5 Baum AE, Hamshere M, Green E et al. Meta-analysis of two genome-wide association studies of bipolar disorder reveals important points of agreement. Mol Psychiatry 2008; 13 (05) 466-467
- 6 Ferreira MA, O’Donovan MC, Meng YA et al. Wellcome Trust Case Control Consortium. Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet 2008; 40: 1056-1058
- 7 Sklar P, Smoller JW, Fan J et al. Whole-genome association study of bipolar disorder. Mol Psychiatry 2008; 13 (06) 558-569
- 8 Schulze TG, Detera-Wadleigh SD, Akula N et al. Two variants in Ankyrin 3 (ANK3) are independent genetic risk factors for bipolar disorder. Mol Psychiatry 2009; 14: 487-491
- 9 Hoang U, Stewart R, Goldacre MJ. Mortality after hospital discharge for people with schizophrenia or bipolar disorder: retrospective study of linked English hospital episode statistics, 1999–2006. BMJ 2011; Sep 13; 343: d5422
- 10 Osborn DPJ, Levy G, Nazareth I et al. Relative risk of cardiovascular and cancer mortality in people with severe mental illness from the United Kingdom’s General Practice Research Database. Arch Gen Psychiatry 2007; 64: 242-249
- 11 Lloyd AJ, Moore PB, Cousins DA et al. White matter lesions in euthymic patients with bipolar disorder. Acta Psychiatr Scand 2009; 120 (06) 481-491
- 12 Agarwal N, Port JD, Bazzocchi M et al. Update on the use of MR for assessment and diagnosis of psychiatric diseases. Radiology 2010; 255 (01) 23-41
- 13 Thomas AJ, O’Brien JT, Davis S et al. Ischemic basis for deep white matter hyperintensities in major depression: a neuropathological study. Arch Gen Psychiatry 2002; 59 (09) 785-792
- 14 Lyoo IK, Lee HK, Jung JH et al. White matter hyperintensities on magnetic resonance imaging of the brain in children with psychiatric disorders. Compr Psychiatry 2002; 43 (05) 361-368
- 15 Beyer JL, Young R, Kuchibhatla M et al. Hyperintense MRI lesions in bipolar disorder: A meta-analysis and review. Int Rev Psychiatry 2009; 21 (04) 394-409
- 16 Simpson SW, Jackson A, Baldwin RC et al. IPA/Bayer Research Awards in Psychogeriatrics. Subcortical hyperintensities in late-life depression: acute response to treatment and neuropsychological impairment. Int Psychogeriatr 1997; 9 (03) 257-275
- 17 Dupont RM, Jernigan TL, Butters N et al. Subcortical abnormalities detected in bipolar affective disorder using magnetic resonance imaging. Clinical and neurophysiological significance. Arch Gen Psychiatry 1990; 47 (01) 55-59
- 18 McDonald WM, Tupler LA, Marsteller FA et al. Hyperintense lesions on magnetic resonance images in bipolar disorder. Biological Psychiatry 1999; 45 (08) 965-971
- 19 Moore PB, Shepherd DJ, Eccleston D et al. Cerebral white matter lesions in bipolar affective disorder: Relationship to outcome. British Journal of Psychiatry 2001; 178: 172-176
- 20 Silverstone T, McPherson H, Li Q et al. Deep white matter hyperintensities in patients with bipolar depression, unipolar depression and age-matched control subjects. Bipolar Disorder 2003; 5: 53-57
- 21 Kunz M, Ceresér KM, Goi PD et al. Serum levels of IL-6, IL-10 and TNF-α in patients with bipolar disorder and schizophrenia: differences in pro- and anti-inflammatory balance. Rev Bras Psiquiatr 2011; 33 (03) 268-274
- 22 Barbosa IG, Rocha NP, de Miranda AS et al. Increased levels of adipokines in bipolar disorder. J Psychiatr Res 2012; 46 (03) 389-393
- 23 Tsai SY, Chung KH, Wu JY et al. Inflammatory markers and their relationships with leptin and insulin from acute mania to full remission in bipolar disorder. J Affect Disord 2012; 136 (01) 110-116
- 24 Krauthammer C, Klerman GL. Secondary Mania. Arch Gen Psychiatry 1978; 35: 1333-1339
- 25 Ollila HM, Soronen P, Silander K et al. Findings from bipolar disorder genome-wide association studies replicate in a Finnish bipolar family-cohort. Mol Psychiatry 2009; 14 (04) 351-353
- 26 Takata A, Kawasaki H, Iwayama Y et al. Nominal association between a polymorphism in DGKH and bipolar disorder detected in a meta-analysis of East Asian case-control samples. Psychiatry Clin Neurosci 2011; 65 (03) 280-285
- 27 Zeng Z, Wang T, Li T et al. Common SNPs and haplotypes in DGKH are associated with bipolar disorder and schizophrenia in the Chinese Han population. Mol Psychiatry 2011; 16 (05) 473-475
- 28 Lasky-Su JA, Faraone SV, Glatt SJ et al. Meta-analysis of the association between two polymorphisms in the serotonin transporter gene and affective disorders. Am J Med Genet B Neuropsychiatr Genet 2005; 133B (01) 110-115
- 29 Meira-Lima I, Michelon L, Cordeiro Q et al. Allelic association analysis of the functional insertion/deletion polymorphism in the promoter region of the serotonin transporter gene in bipolar affective disorder. J Mol Neurosci 2005; 27 (02) 219-224
- 30 Manchia M, Zai CC, Squassina A et al. Mixture regression analysis on age at onset in bipolar disorder patients: investigation of the role of serotonergic genes. Eur Neuropsychopharmacol 2010; 20: 663-670
- 31 Anguelova M, Benkelfat C, Turecki G. A systematic review of association studies investigating genes coding for serotonin receptors and the serotonin transporter: I. Affective disorders. Mol Psychiatry 2003; 8: 574-591
- 32 Le-Niculescu H, Patel SD, Bhat M et al. Convergent functional genomics of genome-wide association data for bipolar disorder: comprehensive identification of candidate genes, pathways and mechanisms. Am J Med Genet B Neuropsychiatr Genet 2009; 150B: 155-181
- 33 Mansour HA, Wood J, Logue T et al. Association study of eight circadian genes with bipolar I disorder, schizoaffective disorder and schizophrenia. Genes Brain Behav 2006; 5: 150-157
- 34 Nievergelt CM, Kripke DF, Barrett TB et al. Suggestive evidence for association of the circadian genes PERIOD3 and ARNTL with bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2006; 141B: 234-241
- 35 Fan J, Sklar P. Genetics of bipolar disorder: focus on BDNF Val66Met polymorphism. Growth factors and psychiatric disorders. Chichester (Novartis Foundation Symposium 289): Wiley; 2008: 60-73
- 36 Geller B, Badner JA, Tillman R et al. Linkage Disequilibrium of the Brain-derived neurotrophic factor Val66Met polymorphism in children with a prepubertal and early adolescent bipolar disorder phenotype. Am J Psychiatry 2004; 161 (09) 1698-1700
- 37 Xu J, Liu Y, Wang P et al. Positive association between the brain-derived neurotrophic factor (BDNF) gene and bipolar disorder in the Han Chinese population. Am J Med Genet B Neuropsychiatr Genet 2010; 153B (01) 275-279
- 38 Cichon S, Mühleisen TW, Degenhardt FA et al. Genome-wide association study identifies genetic variation in neurocan as a susceptibility factor for bipolar disorder. Am J Hum Genet 2011; 88 (03) 372-381
- 39 Riess H, Schwartz CE, Klerman GL. Manic Syndrome Following Head Injury: Another Form of Secundary Mania. J Clin Psychiatry 1987; 48: 1
- 40 Tupler LA, Krishnan KRR, McDonald WM et al. Anatomic Location and Laterality of MRI Signal Hyperintensities in Late Life Depression. Journal of Psychosomatic Research 2002; 53: 665-676
- 41 Osborn PJ, Levy G, Nazareth I et al. Relative Risk of Cardiovascular and Cancer Mortality in People With Severe Mental Illness From the United Kingdom’s General Practice Research Database. Arch Gen Psychiatry 2007; 64: 242-249
- 42 Kyoon L, Lee HK, Jung LH et al. White Matter Hyperintensities on Magnetic Resonance Imaging of the Brain in Children with Psychiatric Disorders. Comprehensive Psychiatry 2002; 43 (05) 361-368
- 43 Bonelli RM, Cummings JL. Frontal-subcortical circuitry and behavior. Dialogues Clin Neurosci 2007; 9 (02) 141-151 Review
- 44 DeLong MR, Alexander GE, Mitchell SJ et al. The contribution of basal ganglia to limb control. Prog Brain Res 1986; 64: 161-174
- 45 Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 1986; 9: 357-381
- 46 Phan KL, Wager T, Taylor SF et al. Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. Neuroimage 2002; 16 (02) 331-348
- 47 Lane RD, Reiman EM, Axelrod B et al. Neural correlates of levels of emotional awareness. Evidence of an interaction between emotion and attention in the anterior cingulate cortex. J Cogn Neurosci 1998; 10 (04) 525-535
- 48 Chen YC, Thaler D, Nixon PD et al. The functions of the medial premotor cortex. II The timing and selection of learned movements. Exp Brain Res 1995; 102 (03) 461-473
- 49 Sax KW, Strakowski SM, Zimmerman ME et al. Frontosubcortical neuroanatomy and the continuous performance test in mania. Am J Psychiatry 1999; 156 (01) 139-141
- 50 Drevets WC, Price JL, Simpson JR Jr et al. Subgenual prefrontal cortex abnormalities in mood disorders. Nature 1997; 386 (6627) 824-827
- 51 Ongür D, Drevets WC, Price JL. Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc Natl Acad Sci U S A 1998; 95 (22) 13290-13295
- 52 Foland LC, Altshuler LL, Bookheimer SY et al. Evidence for deficient modulation of amygdala response by prefrontal cortex in bipolar mania. Psychiatry Res 2008 162 (01) 27-37
- 53 Chepenik LG, Raffo M, Hampson M et al. Functional connectivity between ventral prefrontal cortex and amygdala at low frequency in the resting state in bipolar disorder. Psychiatry Res 2010; 182 (03) 207-210
- 54 Strakowski SM, Delbello MP, Adler CM. The functional neuroanatomy of bipolar disorder: a review of neuroimaging findings. Mol Psychiatry 2005; 10 (01) 105-116 Review
- 55 Strakowski SM, Adler CM, DelBello MP. Volumetric MRI studies of mood disorders: do they distinguish unipolar and bipolar disorder?. Bipolar Disord 2002; 4 (02) 80-88 Review
- 56 Adler CM, Adams J, DelBello MP et al. Evidence of white matter pathology in bipolar disorder adolescents experiencing their first episode of mania:diffusion tensor imaging study. Am J Psychiatry 2006; 163 (02) 322-324
- 57 Ferro JM, Caeiro L, Santos C. Poststroke emotional and behavior impairment: a narrative review. Cerebrovasc Dis 2009; 27 (Suppl. 01) 197-203
- 58 Starkstein SE, Robinson RG, Berthier ML et al. Differential mood changes following basal ganglia vs. thalamic lesions. Arch Neurol 1988; 45 (07) 725-730
- 59 Starkstein SE, Fedoroff P, Berthier ML et al. Manic-depressive and pure manic states after brain lesions. Biol Psychiatry 1991; 29 (02) 149-158
- 60 Robinson RG. Differential behavioral and biochemical effects of right and left hemispheric cerebral infarction in the rat. Science 1979; 205 (4407) 707-710
- 61 Kubos KL, Moran TH, Robinson RG. Differential and asymmetrical behavioral effects of electrolytic or 6-hydroxydopamine lesions in the nucleus accumbens. Brain Res 1987; 401 (01) 147-151
- 62 Robinson RG, Coyle JT. The differential effect of right versus left hemispheric cerebral infarction on catecholamines and behavior in the rat. Brain Res 1980; 188 (01) 63-78
- 63 Starkstein SE, Boston JD, Robinson RG. Mechanisms of mania after brain injury. 12 case reports and review of the literature. J Nerv Ment Dis 1988; 176 (02) 87-100 Review
- 64 Cummings JL. Organic psychoses. Delusional disorders and secondary mania. Psychiatr Clin North Am 1986; 9 (02) 293-311