Subscribe to RSS
DOI: 10.1055/s-0033-1335892
Dynamic Contrast Enhanced MRI of the Prostate: Comparison of Gadobutrol and Gd-DTPA
Dynamische kontrastmittelgestützte MRT der Prostata: Vergleich von Gadobutrol mit Gd-DTPAPublication History
07 January 2013
18 May 2013
Publication Date:
25 July 2013 (online)
Abstract
Purpose: To evaluate the enhancement profile of the macrocyclic contrast medium (CM) gadobutrol in comparison to linear CM Gd-DTPA in DCE-MRI of the prostate.
Materials and Methods: In total 53 patients with prostata cancer (PCa) were included, who received a radical prostatectomy after multiparametric MRI of the prostate including DCE-MRI. Using circular regions of interests normal peripheral zone (PZ) and PCa foci > 5 mm in diameter (42 and 34 foci in Gd-DTPA and gadobutrol group, respectively) were analysed in DCE-MRI. Enhancement curves (Type I, II and III) and pharmacokinetic parameters were analyzed qualitatively and quantitatively and compared using mixed linear models (two sided p-values < 0.05 were regarded significant).
Results: There was no significant difference in frequencies of curve types I, II or III in the normal PZ (p = 0.63) or in PCa foci (p = 0.75). PCa with a Gleason score ≥ 7 had in comparison to Gleason ≤ 6 significantly more often a Wash-Out-curve (Type III) with both CM (p = 0.02). The relative peak enhancement was in the PZ (Gd-DTPA 1.4 a. u. [1.20; 1.59], gadobutrol 1.58 a. u. [1.37; 1.78]) and in PCa foci (Gd-DTPA 1.56 a. u. [1.41; 1.71], gadobutrol 1.76 a. u. [1.59; 1.94]) significantly higher with gadobutrol (p = 0.04). The pharmacokinetic parameters Ktrans und kep were higher in PCa foci than in PZ (p < 0.0001 and p = 0.002, respectively) without significant difference of the parameter values between both CM (p = 0.65).
Conlusion: This study is the first systematic comparison of gadobutrol and Gd-DTPA in DCE-MRI of the prostate. The relative peak enhancement is higher using gadobutrol compared to Gd-DTPA in DCE-MRI. There was no statistically significant difference in curve types or the pharmacokinetic parameters in PCa or normal PZ between both CM.
Key Points:
-
Gadobutrol yields a higher and faster peak enhancement in prostate cancer and in the normal peripheral zone compared to Gd-DTPA.
-
There was no statistically significant difference observed in curve type frequencies and pharmacokinetic parameters between both CM.
-
Gadobutrol as Gd-DTPA appear to be suitable for DCE-MRI of the prostate for prostate cancer detection.
Citation Format:
-
Durmus T, Vollnberg B, Schwenke C et al. Dynamic Contrast Enhanced MRI of the Prostate: Comparison of Gadobutrol and Gd-DTPA. Fortschr Röntgenstr 2013; 862 – 868
Zusammenfassung
Ziel: Vergleich des makrozyklischen Kontrastmittels (KM) Gadobutrol und des linearen KM Gd-DTPA bezüglich des Signalintensitätsverlaufs in der dynamischen Kontrastmitteluntersuchung (DCE-MRI) der Prostata.
Material und Methoden: Es wurden insgesamt 53 Patienten mit Prostatakarzinom (PCa) eingeschlossen, welche nach einer multiparametrischen MRT der Prostata mit DCE-MRI prostatektomiert wurden. Jedes PCa > 5 mm (42 PCa in Gd-DTPA-Gruppe, 34 PCa in Gadobutrol-Gruppe) und die gesunde periphere Zone (PZ) wurden in der DCE-MRI qualitativ und quantitativ analysiert. Kurvenverläufe (TypI, II und III) und pharmakokinetische Parameter Ktrans und kep wurden anhand gemischt linearer Modelle zwischen beiden Gruppen verglichen; zweiseitige p-Werte < 0,05 wurden als signifikant definiert.
Ergebnisse: Die Frequenz der Kurventypen I, II und III unterschied sich zwischen den KM weder in der PZ (p = 0,63) noch im PCa (p = 0,75) signifikant voneinander. PCa mit einem Gleason-Score ≥ 7 zeigten im Vergleich zu Gleason-Score ≤ 6 statistisch signifikant häufiger bei beiden KM eine Wash-out-Kurve (Typ III, p = 0,02). Das relative Signalintensitätsmaximum war in der PZ (Gd-DTPA 1,4 a. u. [1,20; 1,59], Gadobutrol 1,58 a. u. [1,37; 1,78]) und im PCa-Gewebe (Gd-DTPA 1,56 a. u. [1,41; 1,71], Gadobutrol 1,76 a. u. [1,59; 1,94]) für Gadobutrol signifikant höher (p = 0,04). Die pharmakokinetischen Parameter Ktrans und kep waren im Tumorgewebe signifikant höher als in der PZ (Ktransp< 0,0001; kep p = 0,002). Zwischen den KM fand sich kein signifikanter Unterschied bezüglich der pharmakokinetischen Parameter (p = 0,65)
Schlussfolgerung: Diese Arbeit ist der erste systematische Vergleich von Gadobutrol und Gd-DTPA in der DCE-MRI der Prostata. Hierbei konnte gezeigt werden, dass das maximale relative Enhancement mit Gadobutrol im Vergleich zu Gd-DTPA höher ist, wobei Kurventypen und pharmakokinetische Parameter Ktrans und kep weder im PCa noch in der normalen PZ einen statistisch signifikanten Unterschied aufweisen.
-
Literatur
- 1 Hong YM, Lai FC, Chon CH et al. Impact of prior biopsy scheme on pathologic features of cancers detected on repeat biopsies. Urol Oncol 2004; 22: 7-10
- 2 Djavan B, Ravery V, Zlotta A et al. Prospective evaluation of prostate cancer detected on biopsies 1, 2, 3 and 4: when should we stop?. J Urol 2001; 166: 1679-1683
- 3 Turkbey B, Mani H, Shah V et al. Multiparametric 3T prostate magnetic resonance imaging to detect cancer: histopathological correlation using prostatectomy specimens processed in customized magnetic resonance imaging based molds. J Urol 2011; 186: 1818-1824
- 4 Roethke M, Anastasiadis AG, Lichy M et al. MRI-guided prostate biopsy detects clinically significant cancer: analysis of a cohort of 100 patients after previous negative TRUS biopsy. World J Urol 2012; 2: 213-218
- 5 Hoeks CM, Hambrock T, Yakar D et al. Transition zone prostate cancer: detection and localization with 3-T multiparametric MR imaging. Radiology 2013; 266: 207-217
- 6 Futterer JJ, Heijmink SW, Scheenen TW et al. Prostate cancer localization with dynamic contrast-enhanced MR imaging and proton MR spectroscopic imaging. Radiology 2006; 241: 449-458
- 7 Franiel T, Stephan C, Erbersdobler A et al. Areas suspicious for prostate cancer: MR-guided biopsy in patients with at least one transrectal US-guided biopsy with a negative finding – multiparametric MR imaging for detection and biopsy planning. Radiology 2011; 259: 162-172
- 8 Franiel T, Hamm B, Hricak H. Dynamic contrast-enhanced magnetic resonance imaging and pharmacokinetic models in prostate cancer. Eur Radiol 2011; 21: 616-626
- 9 Hoeks CM, Barentsz JO, Hambrock T et al. Prostate cancer: multiparametric MR imaging for detection, localization, and staging. Radiology 2011; 261: 46-66
- 10 Tombach B, Heindel W. Value of 1.0-M gadolinium chelates: review of preclinical and clinical data on gadobutrol. Eur Radiol 2002; 12: 1550-1556
- 11 Allard M, Doucet D, Kien P et al. Experimental study of DOTA-gadolinium. Pharmacokinetics and pharmacologic properties. Invest Radiol 1988; 23: S271-S274
- 12 Attenberger UI, Runge VM, Morelli JN et al. Evaluation of gadobutrol, a macrocyclic, nonionic gadolinium chelate in a brain glioma model: comparison with gadoterate meglumine and gadopentetate dimeglumine at 1.5 T, combined with an assessment of field strength dependence, specifically 1.5 versus 3 T. J Magn Reson Imaging 2010; 31: 549-555
- 13 Chanalet S, Masson B, Boyer L et al. Etudes comparatives de la tolerance du gadodiamide, du gadopentetate de dimeglumine et du gadoterate de meglumine au cours d'un examen IRM du systeme nerveux central. J Radiol 1995; 76: 417-421
- 14 Frenzel T, Lengsfeld P, Schirmer H et al. Stability of gadolinium-based magnetic resonance imaging contrast agents in human serum at 37 degrees C. Invest Radiol 2008; 43: 817-828
- 15 Abujudeh HH, Kaewlai R, Kagan A et al. Nephrogenic systemic fibrosis after gadopentetate dimeglumine exposure: case series of 36 patients. Radiology 2009; 253: 81-89
- 16 Rohrer M, Bauer H, Mintorovitch J et al. Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol 2005; 40: 715-724
- 17 Tweedle MF, Wedeking P, Telser J et al. Dependence of MR signal intensity on Gd tissue concentration over a broad dose range. Magn Reson Med 1991; 22: 191-194 discussion 195 – 196
- 18 Herborn CU, Lauenstein TC, Ruehm SG et al. Intraindividual comparison of gadopentetate dimeglumine, gadobenate dimeglumine, and gadobutrol for pelvic 3D magnetic resonance angiography. Invest Radiol 2003; 38: 27-33
- 19 Durmus T, Schilling R, Doeblin P et al. Gadobutrol for magnetic resonance imaging of chronic myocardial infarction: intraindividual comparison with gadopentetate dimeglumine. Invest Radiol 2012; 47: 183-188
- 20 Martincich L, Faivre-Pierret M, Zechmann CM et al. Multicenter, double-blind, randomized, intraindividual crossover comparison of gadobenate dimeglumine and gadopentetate dimeglumine for Breast MR imaging (DETECT Trial). Radiology 2011; 258: 396-408
- 21 Epstein JI. An update of the Gleason grading system. J Urol 2010; 183: 433-440
- 22 Wang HZ, Riederer SJ, Lee JN. Optimizing the precision in T1 relaxation estimation using limited flip angles. Magn Reson Med 1987; 5: 399-416
- 23 Walker-Samuel S, Leach MO, Collins DJ. Reference tissue quantification of DCE-MRI data without a contrast agent calibration. Phys Med Biol 2007; 52: 589-601
- 24 Tofts PS, Kermode AG. Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 1991; 17: 357-367
- 25 Kuhl CK, Mielcareck P, Klaschik S et al. Dynamic breast MR imaging: are signal intensity time course data useful for differential diagnosis of enhancing lesions?. Radiology 1999; 211: 101-110
- 26 Link TM, Stahl R, Woertler K. Cartilage imaging: motivation, techniques, current and future significance. Eur Radiol 2007; 17: 1135-1146
- 27 Kim ES, Chang JH, Choi HS et al. Diagnostic yield of double-dose gadobutrol in the detection of brain metastasis: intraindividual comparison with double-dose gadopentetate dimeglumine. Am J Neuroradiol 2010; 31: 1055-1058
- 28 Anzalone N, Gerevini S, Scotti R et al. Detection of cerebral metastases on magnetic resonance imaging: intraindividual comparison of gadobutrol with gadopentetate dimeglumine. Acta Radiol 2009; 50: 933-940
- 29 Schlemmer HP. Multiparametrische MRT der Prostata: Methode zur Früherkennung des Prostatakarzinoms?. Fortschr Röntgenstr 2010; 182: 1067-1075
- 30 Franiel T. Multiparametrische Magnetresonanztomografie der Prostata – Technik und klinische Anwendungen. Fortschr Röntgenstr 2011; 183: 607-617
- 31 Beyersdorff D, Ludemann L, Dietz E et al. Dynamische kontrastmittelunterstützte MRT der Prostata: Vergleich von zwei Auswerteverfahren. Fortschr Röntgenstr 2011; 183: 456-461
- 32 Barentsz JO, Richenberg J, Clements R et al. ESUR prostate MR guidelines 2012. Eur Radiol 2012; 22: 746-757
- 33 Rothke M, Blondin D, Schlemmer HP et al. PI-RADS-Klassifikation: Strukturiertes Befundungsschema für die MRT der Prostata. Fortschr Röntgenstr 2013; 185: 253-261
- 34 Vassiou K, Kanavou T, Vlychou M et al. Characterization of breast lesions with CE-MR multimodal morphological and kinetic analysis: comparison with conventional mammography and high-resolution ultrasound. Eur J Radiol 2009; 70: 69-76