Synthesis 2013; 45(13): 1870-1876
DOI: 10.1055/s-0033-1338415
paper
© Georg Thieme Verlag Stuttgart · New York

A Convenient Synthesis of α-Substituted β,γ-Unsaturated Ketones and Esters via the Direct Addition of Substituted Allylic Zinc Reagents Prepared by Direct Insertion

Christoph Sämann
Ludwig-Maximilians-Universität München, Department Chemie, Butenandtstraße 5–13, Haus F, 81377 München, Germany   Fax: +49(89)218077680   Email: paul.knochel@cup.uni-muenchen.de
,
Paul Knochel*
Ludwig-Maximilians-Universität München, Department Chemie, Butenandtstraße 5–13, Haus F, 81377 München, Germany   Fax: +49(89)218077680   Email: paul.knochel@cup.uni-muenchen.de
› Author Affiliations
Further Information

Publication History

Received: 20 February 2013

Accepted after revision: 25 March 2013

Publication Date:
30 April 2013 (online)


Dedicated to Professor Scott E. Denmark on the occasion of his 60th birthday

Abstract

A practical and convenient procedure for the synthesis of α-substituted β,γ-unsaturated ketones and esters has been developed. Substituted allylic zinc reagents, prepared via direct metal insertion in substituted allylic halides, react readily with a broad range of acid chlorides and chloroformates furnishing the corresponding α-substituted β,γ-unsaturated ketones and esters in high yield and perfect regioselectivity.

Supporting Information

 
  • References


    • For allylmetal additions, see:
    • 1a Chemler SR, Roush WR In Modern Carbonyl Chemistry . Otera J. Wiley-VCH; Weinheim: 2000. Chap. 10
    • 1b Denmark SE, Almstead NG In Modern Carbonyl Chemistry . Otera J. Wiley-VCH; Weinheim: 2000. Chap, 11
    • 1c Stereoselective Synthesis, Methods of Organic Chemistry (Houben-Weyl) . Edition E21, Vol. 3; Helmchen G, Hoffmann R, Mulzer J, Schaumann E. Thieme; Stuttgart: 1996
    • 1d Yasuda M, Hirata K, Nishino M, Yamamoto A, Baba A. J. Am. Chem. Soc. 2002; 124: 13442
    • 1e Thadani AN, Batey RA. Org. Lett. 2002; 4: 3827
    • 1f Li SW, Batey RA. Chem. Commun. 2004; 1382
    • 1g Buse CT, Heathcock CH. Tetrahedron Lett. 1978; 1865
    • 1h Yamamoto Y, Yatagai H, Naruta Y, Maruyama K. J. Am. Chem. Soc. 1980; 102: 7107
    • 1i Yatsumonji Y, Nishimura T, Tsubouchi A, Noguchi K, Takeda T. Chem. Eur. J. 2009; 15: 2680
    • 2a Czernecki S, Georgoulis C. Bull. Soc. Chim. Fr. 1968; 3713
    • 2b Courtois G, Miginiac L. J. Organomet. Chem. 1974; 69: 1
    • 2c Yamamoto Y. Acc. Chem. Rev. 1987; 20: 243
    • 2d Yamamoto Y, Asao N. Chem. Rev. 1993; 93: 2207
    • 2e Schlosser M, Desponds O, Lehmann R, Moret E, Rauchschwalbe G. Tetrahedron 1993; 49: 10175
    • 2f Marshall JA. Chem. Rev. 2000; 100: 3163
    • 2g Denmark SE, Fu J. Chem. Rev. 2003; 103: 2763
    • 2h Chabaud L, James P, Landais Y. Eur. J. Org. Chem. 2004; 3173
    • 2i Fürstner A, Voigtländer D. Synthesis 2000; 975
    • 2j Roush WR In Comprehensive Organic Synthesis . Vol. 2. Trost BM, Fleming I, Heathcock CH. Pergamon; Oxford: 1991: 1-53
    • 2k Kim JG, Camp EH, Walsh PJ. Org. Lett. 2006; 8: 4413
    • 3a Gaudemar M. Bull. Soc. Chim. Fr. 1962; 974
    • 3b Maeda H, Shono K, Ohmori H. Chem. Pharm. Bull. 1994; 42: 1808
    • 3c Bellassoued M, Frangin Y, Gaudemar M. Synthesis 1977; 205
    • 4a Ren H, Dunet G, Mayer P, Knochel P. J. Am. Chem. Soc. 2007; 129: 5376
    • 4b Helm MD, Mayer P, Knochel P. Chem. Commun. 2008; 1916
  • 5 Demuth M, Mikhail G. Synthesis 1989; 145
    • 6a Monti SA, White GL. J. Org. Chem. 1975; 40: 215
    • 6b Hoffman HM. R, Tsushima T. J. Am. Chem. Soc. 1977; 99: 6008
    • 6c Beak P, Berger KR. J. Am. Chem. Soc. 1980; 102: 3848
    • 6d Earnshaw C, Torr RS, Warren SS. J. Chem. Soc., Perkin Trans. 1 1983; 2893
    • 7a Hosomi A, Hashimoto H, Sakurai H. J. Org. Chem. 1978; 43: 2551
    • 7b Laguerre M, Dunogues J, Calas R. Tetrahedron Lett. 1980; 21: 831
    • 7c Hayashi T, Konishi M, Ito H, Kumuda M. J. Am. Chem. Soc. 1982; 104: 4962
  • 8 Labadie JW, Tueting D, Stille JK. J. Org. Chem. 1983; 48: 4634
  • 9 Sato T, Kawara T, Nishizawa A, Fujisawa T. Tetrahedron Lett. 1980; 21: 3377
  • 10 Hegedus IS, Kendall PM, Lo SM, Sheats JR. J. Am. Chem. Soc. 1975; 97: 5448
  • 11 Cahiez G, Laboue B. Tetrahedron Lett. 1989; 30: 7369
  • 12 Kasatkin AN, Kulak AN, Tolstikov GA. J. Organomet. Chem. 1988; 346: 23
  • 13 Larock RC, Lu Y. J. Org. Chem. 1993; 58: 2846
  • 14 Bipul B, Anima B, Dipak P, Jagir SS. Tetrahedron Lett. 1996; 37: 9087
  • 15 Yadav JS, Srinivas D, Reddy GS, Himabindu K. Tetrahedron Lett. 1997; 36: 8745
    • 16a Ranu BC, Majee A, Das AR. Tetrahedron Lett. 1995; 36: 4885
    • 16b Ranu BC, Majee A, Das AR. Tetrahedron Lett. 1996; 37: 1109
    • 17a Blaise EE. Compt. Rend. 1901; 132: 478
    • 17b Rao HS. P, Rafi S, Padmavathy K. Tetrahedron 2008; 64: 8037
    • 17c Cason J, Rinehart KL. Jr, Thorston SD. Jr. J. Org. Chem. 1953; 18: 1594
    • 17d Hannick SM, Kishi Y. J. Org. Chem. 1983; 48: 3833
    • 17e Wang D, Yue J.-M. Synlett 2005; 2077
  • 18 Krasovskiy A, Knochel P. Synthesis 2006; 890

    • For reviews, see:
    • 19a Grubbs RH. Tetrahedron 2004; 60: 7117
    • 19b Grubbs RH, Miller SJ, Fu GC. Acc. Chem. Res. 1995; 28: 446

      For reviews, see:
    • 20a Felpin F.-X, Lebreton J. Eur. J. Org. Chem. 2003; 3693
    • 20b Gradillas A, Perez-Castells J. Angew. Chem. Int. Ed. 2006; 45: 6086
    • 20c Prunet J. Angew. Chem. Int. Ed. 2003; 42: 2826
    • 20d Arisawa M, Nishida A, Nakagawa M. J. Organomet. Chem. 2006; 691: 5109
    • 21a Huang J.-K, Stevens ED, Nolan SP, Petersen JL. J. Am. Chem. Soc. 1999; 121: 2674
    • 21b Scholl M, Trnka TM, Morgan JP, Grubbs RH. Tetrahedron Lett. 1999; 40: 2247
    • 21c Ackermann L, Fürstner A, Weskamp T, Kohl FJ, Herrmann WA. Tetrahedron Lett. 1999; 40: 4787
  • 22 The reaction has also been carried out without separating the allylic zinc species from the excess of zinc powder with an insignificant loss in yield.