Synthesis 2013; 45(20): 2824-2831
DOI: 10.1055/s-0033-1338512
practical synthetic procedures
© Georg Thieme Verlag Stuttgart · New York

A Practical Synthetic Approach to Chiral (α-Chloroalkyl)boronic Esters via Iridium-Catalyzed Chemoselective Hydrogenation of Chloro-Substituted Alkenyl Boronates

Stephen J. Roseblade
a   Johnson Matthey, Catalysis and Chiral Technologies, Unit 28, Cambridge Science Park, Milton Road, Cambridge CB4 0FP, UK
,
Eva Casas-Arcé
a   Johnson Matthey, Catalysis and Chiral Technologies, Unit 28, Cambridge Science Park, Milton Road, Cambridge CB4 0FP, UK
,
Ulrike Nettekoven
b   Solvias AG, Business Unit Synthesis and Catalysis, Römerpark 2, 4303 Kaiseraugst, Switzerland
,
Ivana Gazić Smilović
c   Lek Pharmaceuticals, d.d., Sandoz Development Center Slovenia, API Development, Organic Synthesis Department, Kolodvorska 27, 1234 Mengeš, Slovenia
,
Antonio Zanotti-Gerosa
a   Johnson Matthey, Catalysis and Chiral Technologies, Unit 28, Cambridge Science Park, Milton Road, Cambridge CB4 0FP, UK
,
Zdenko Časar*
c   Lek Pharmaceuticals, d.d., Sandoz Development Center Slovenia, API Development, Organic Synthesis Department, Kolodvorska 27, 1234 Mengeš, Slovenia
d   Sandoz GmbH, Global Portfolio Management API, 6250 Kundl, Austria   Fax: +43(5338)200418   Email: zdenko.casar@sandoz.com
e   Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
› Author Affiliations
Further Information

Publication History

Received: 26 June 2013

Accepted: 01 July 2013

Publication Date:
01 August 2013 (online)


Dedicated to Prof. Dr. Dominique Lorcy (University of Rennes 1, France) on the occasion of her birthday

Abstract

Chiral (α-chloroalkyl)boronic esters are obtained by homogeneous asymmetric iridium-catalyzed chemoselective hydrogenation of (1-chloro-1-alkenyl)boronic esters. P,N–Iridium catalysis provides low level of dehalogenation during the hydrogenation, while the catalyst activity and enantioselectivity essentially depends on the applied P,N ligand features. Fine tuning of P,N ligand structures enables high conversions, broad substrate acceptance, and high to excellent enantioselectivities with enantiomeric excess values up to 94% along with low levels of dechlorination. Low catalyst loading with S/C = 200 can also be achieved for the preparation of an industrially important isobutyl derivative.

 
  • References

    • 1a Matteson DS. Chem. Rev. 1989; 89: 1535
    • 1b Matteson DS. Tetrahedron 1989; 45: 1859
    • 1c Matteson DS. Tetrahedron 1998; 54: 10555
    • 2a Yang W, Gao X, Wang B. Med. Res. Rev. 2003; 23: 346
    • 2b Matteson DS. Med. Res. Rev. 2008; 28: 233
    • 2c Baker SJ, Ding CZ, Akama T, Zhang Y.-K, Hernandez V, Xia Y. Future Med. Chem. 2009; 1: 1275
    • 2d Dembitsky VM, Al Quntar AA, Srebnik M. Chem. Rev. 2011; 111: 209
    • 2e Smoum R, Rubinstein A, Dembitsky VM, Srebnik M. Chem. Rev. 2012; 112: 4156
    • 2f Lawasut P, Chauhan D, Laubach J, Hayes C, Fabre C, Maglio M, Mitsiades C, Hideshima T, Anderson KC, Richardson PG. Curr. Hematol. Malig. Rep. 2012; 7: 258
    • 2g Dick LR, Fleming PE. Drug Discovery Today 2010; 15: 243

      For recent synthetic approaches to α-aminoboronic acid derivatives, see:
    • 3a Beenen MA, An C, Ellman JA. J. Am. Chem. Soc. 2008; 130: 6910
    • 3b Sun J, Kong L. Chin. Pat. Appl CN101812026, 2010 ; Chem. Abstr. 2010, 153, 383296
    • 3c Solé C, Gulyás H, Fernández E. Chem. Commun. 2012; 48: 3769
    • 3d He Z, Zajdlik A, St Denis JD, Assem N, Yudin AK. J. Am. Chem. Soc. 2012; 134: 9926
    • 3e Zhang S.-S, Zhao Y.-S, Tian P, Lin G.-Q. Synlett 2013; 24: 437
    • 3f Wen K, Wang H, Chen J, Zhang H, Cui X, Wei C, Fan E, Sun Z. J. Org. Chem. 2013; 78: 3405
    • 3g Hong K, Morken JP. J. Am. Chem. Soc. 2013; 135: 9252
    • 4a Touchet S, Carreaux F, Carboni B, Bouillon A, Boucher J.-L. Chem. Soc. Rev. 2011; 40: 3895
    • 4b Rentsch A, Landsberg D, Brodmann T, Bülow L, Girbig A.-K, Kalesse M. Angew. Chem. Int. Ed. 2013; 52: 5450
  • 5 Paramore A, Frantz S. Nat. Rev. Drug Discovery 2003; 2: 611

    • For the synthesis of Bortezomib and its building blocks, see:
    • 6a Kettner CA, Shenvi AB. J. Biol. Chem. 1984; 259: 15106
    • 6b Tsai DJ. S, Jesthi PK, Matteson DS. Organometallics 1983; 2: 1543
    • 6c Adams J, Behnke M, Chen S, Cruickshank AA, Dick LR, Grenier L, Klunder JM, Ma Y.-T, Plamondon L, Stein RL. Bioorg. Med. Chem. Lett. 1998; 8: 333
    • 6d Ivanov AS, Zhalnina AA, Shishkov SV. Tetrahedron 2009; 65: 7105
  • 7 Cvek B. Drugs Future 2012; 37: 561
    • 8a Piva R, Ruggeri B, Williams M, Costa G, Tamagno I, Ferrero D, Giai V, Coscia M, Peola S, Massaia M, Pezzoni G, Allievi C, Pescalli N, Cassin M, di Giovine S, Nicoli P, de Feudis P, Strepponi I, Roato I, Ferracini R, Bussolati B, Camussi G, Jones-Bolin S, Hunter K, Zhao H, Neri A, Palumbo A, Berkers C, Ovaa H, Bernareggi A, Inghirami G. Blood 2008; 111: 2765
    • 8b Dorsey BD, Iqbal M, Chatterjee S, Menta E, Bernardini R, Bernareggi A, Cassarà PG, D’Arasmo G, Ferretti E, De Munari S, Oliva A, Pezzoni G, Allievi C, Strepponi I, Ruggeri B, Ator MA, Williams M, Mallamo JP. J. Med. Chem. 2008; 51: 1068
  • 9 Johnson KM. S. Curr. Opin. Investig. Drugs 2010; 11: 455
    • 10a Ohmura T, Awano T, Suginome M. Chem. Lett. 2009; 38: 664
    • 10b Ohmura T, Awano T, Suginome M. J. Am. Chem. Soc. 2010; 132: 13191
    • 10c Awano T, Ohmura T, Suginome M. J. Am. Chem. Soc. 2011; 133: 20738
  • 11 For a review on the dehalogenation in homogeneous hydrogenations, see: Sisak A, Simon OB. In The Handbook of Homogeneous Hydrogenation . de Vries JG, Elsevier CJ. Wiley-VCH; Weinheim: 2007. Chap. 18, 513-546
    • 12a Gazić Smilović I, Casas-Arcé E, Roseblade SJ, Nettekoven U, Zanotti-Gerosa A, Kovačevič M, Časar Z. Angew. Chem. Int. Ed. 2012; 51: 1014
    • 12b Gazić Smilović I, Časar Z. PCT Pat. Appl WO2010146172, 2010 ; Chem. Abstr. 2010, 154, 88353.
    • 12c Gazić Smilović I, Časar Z. PCT Pat. Appl WO2010146176, 2010 ; Chem. Abstr. 2010, 154, 88352.
    • 12d Burgess K. Chem. Ind. 2012; 76: 52
    • 12e Lautens M, Zhang L. Synfacts 2012; 8: 395
    • 12f Lautens M, Petrone DA. Synfacts 2012; 8: 990
    • 12g Bull JA. Angew. Chem. Int. Ed. 2012; 51: 8930
    • 12h Lambert TH. Org. Chem. Highlights 2013; February 11. URL: http://www.organic-chemistry.org/Highlights/ 2013/11February.shtm

      For the preparation of [Rh(cod)DiPFc]BF4, see:
    • 13a Tararov VI, Kadyrov R, Riermeier TH, Holz J, Borner A. Tetrahedron: Asymmetry 1999; 10: 4009
    • 13b Nedden HG. PCT Pat. Appl WO2008084258, 2008 ; Chem. Abstr. 2008, 149, 176474.

      For the synthesis and application of phosphinite-oxazoline ligands, see:
    • 14a Blankenstein J, Pfaltz A. Angew. Chem. Int. Ed. 2001; 40: 4445
    • 14b Menges F, Pfaltz A. Adv. Synth. Catal. 2002; 344: 40
  • 15 For the preparation and use of PHOX ligands, see: Helmchen G, Pfaltz A. Acc. Chem. Res. 2000; 33: 336
  • 16 For the preparation and application of SimplePHOX ligands, see: Smidt SP, Menges F, Pfaltz A. Org. Lett. 2004; 6: 2023
  • 17 For the preparation and use of PyrPHOX ligands, see: Cozzi PG, Zimmermann N, Hilgraf R, Schaffner S, Pfaltz A. Adv. Synth. Catal. 2001; 343: 450

    • For the preparation of phosferrox (Fc-PHOX) type ligands, see:
    • 18a Richards CJ, Mulvaney AW. Tetrahedron: Asymmetry 1996; 7: 1419
    • 18b Ahn KH, Cho C.-W, Baek H.-H, Park J, Lee S. J. Org. Chem. 1996; 61: 4937
  • 19 For the synthesis and application of NeoPHOX ligands, see: Schrems MG, Pfaltz A. Chem. Commun. 2009; 41: 6210
  • 20 For the preparation and application of ferrocenyl-phosphinoimidazoline ligands, see: Boaz NW, Ponasik JA. Jr. US Patent Appl. US20070244319, 2007 ; Chem. Abstr. 2007, 147, 448932.
  • 21 Engman M, Diesen JS, Paptchikhine A, Andersson PG. J. Am. Chem. Soc. 2007; 129: 4536