Subscribe to RSS
DOI: 10.1055/s-0033-1338538
Transition-Metal-Catalyzed Allylic Substitution Reactions: Stereoselective Construction of α- and β-Substituted Carbonyl Compounds
Publication History
Received: 11 May 2013
Accepted after revision: 19 July 2013
Publication Date:
18 November 2013 (online)
Dedicated to Professor Andrew B. Holmes on the occasion of his 70th birthday
Abstract
The stereoselective synthesis of α- and β-substituted carbonyl compounds remains a significant area of interest in organic chemistry. This is largely due to their ubiquity and versatility as synthetic intermediates and the importance of this functionality in a range of biologically important agents. In this context, the transition-metal-catalyzed allylic substitution provides an extremely powerful tool for the asymmetric construction of a variety of α- and β-tertiary and quaternary substituted carbonyl compounds. This review highlights pertinent historical developments of these reactions, from the seminal work with enolate equivalents to the more recent developments with unstabilized enolates and acyl anions. It also outlines the most important mechanistic aspects of these transformations in order to provide insight into the current scope and limitations and potential areas for further development.
1 Introduction
2 Unstabilized Enolate Nucleophiles
2.1 Enolate Equivalents
2.1.1 Enamines
2.1.2 Imines
2.1.3 Silyl Enol Ethers
2.1.4 Enolstannanes
2.1.5 Decarboxylative Approaches
2.2 Metal Enolates
2.2.1 Boron Enolates
2.2.2 Tin Enolates
2.2.3 Copper Enolates
2.2.4 Zinc Enolates
2.2.5 Magnesium Enolates
2.2.6 Sodium Enolates
2.2.7 Lithium Enolates
3 Acyl Anion Equivalents
3.1 Acylmetal Nucleophiles
3.2 ‘Masked’ Acyl Anion Equivalents
4 Conclusions
-
References
- 1 Tsuji J, Takahashi H, Morikawa M. Tetrahedron Lett. 1965; 6: 4387
-
2a Frost CG, Howarth J, Williams JM. J. Tetrahedron: Asymmetry 1992; 3: 1089
-
2b Trost BM, Van Vranken DL. Chem. Rev. 1996; 96: 395
-
2c Trost BM, Crawley ML. Chem. Rev. 2003; 103: 2921
- 2d Lu Z, Ma S. Angew. Chem. Int. Ed. 2008; 47: 258
- 2e Crawley ML In Science of Synthesis, Stereoselective Synthesis. Vol. 3. Evans PA. Thieme; Stuttgart: 2011: 403-401
- 3a Braun M, Meier T. Synlett 2006; 661
- 3b Mohr JT, Stoltz BM. Chem. Asian J. 2007; 2: 1476
- 3c You S.-L, Dai L.-X. Angew. Chem. Int. Ed. 2006; 45: 5246
- 3d Braun M, Meier T. Angew. Chem. Int. Ed. 2006; 45: 6952
- 4a Atkins KE, Walker WE, Manyik RM. Tetrahedron Lett. 1970; 11: 3821
- 4b Hata G, Takahashi K, Miyake A. J. Chem. Soc. D, Chem. Commun. 1970; 1392
- 4c Trost BM, Strege PE. J. Am. Chem. Soc. 1977; 99: 1649
- 5a Fouquet G, Schlosser M. Angew. Chem., Int. Ed. Engl. 1974; 13: 82
- 5b van Klaveren M, Persson ES. M, del Villar A, Grove DM, Bäckvall J.-E, van Koten G. Tetrahedron Lett. 1995; 36: 3059
- 6a Roustan JL, Mérour JY, Houlihan F. Tetrahedron Lett. 1979; 20: 3721
- 6b Xu Y, Zhou B. J. Org. Chem. 1987; 52: 974
- 6c Plietker B. Angew. Chem. Int. Ed. 2006; 45: 1469
- 7a Trost BM, Lautens M. J. Am. Chem. Soc. 1982; 104: 5543
- 7b Trost BM, Hachiya I. J. Am. Chem. Soc. 1998; 120: 1104
- 8a Cuvigny T, Julia M. J. Organomet. Chem. 1983; 250: C21
- 8b Hiyama T, Wakasa N. Tetrahedron Lett. 1985; 26: 3259
- 9a Trost BM, Hung M.-H. J. Am. Chem. Soc. 1983; 105: 7757
- 9b Lloyd-Jones GC, Pfaltz A. Angew. Chem., Int. Ed. Engl. 1995; 34: 462
- 10a Tsuji J, Minami I, Shimizu I. Tetrahedron Lett. 1984; 25: 5157
- 10b Evans PA, Nelson JD. J. Am. Chem. Soc. 1998; 120: 5581
-
11a Zhang S.-W, Mitsudo T, Kondo T, Watanabe Y. J. Organomet. Chem. 1993; 450: 197
- 11b Matsushima Y, Onitsuka K, Kondo T, Mitsudo T, Takahashi S. J. Am. Chem. Soc. 2001; 123: 10405
-
12a Takeuchi R, Kashio M. Angew. Chem., Int. Ed. Engl. 1997; 36: 263
-
12b Janssen JP, Helmchen G. Tetrahedron Lett. 1997; 38: 8025
-
13 For early examples of unsuccessful palladium-catalyzed allylic substitution reactions using unstabilized carbon nucleophiles, see: Trost BM, Fullerton TJ. J. Am. Chem. Soc. 1973; 95: 292
- 14a Myers AG, Yang BH, Chen H, McKinstry L, Kopecky DJ, Gleason JL. J. Am. Chem. Soc. 1997; 119: 6496
- 14b Kummer DA, Chain WJ, Morales MR, Quiroga O, Myers AG. J. Am. Chem. Soc. 2008; 130: 13231
- 15 Mukherjee S, Yang JW, Hoffmann S, List B. Chem. Rev. 2007; 107: 5471
- 16 Ooi T, Maruoka K. Angew. Chem. Int. Ed. 2007; 46: 4222
- 17a Doyle AG, Jacobsen EN. J. Am. Chem. Soc. 2005; 127: 62
- 17b Doyle AG, Jacobsen EN. Angew. Chem. Int. Ed. 2007; 46: 3701
- 18a Bellina F, Rossi R. Chem. Rev. 2010; 110: 1082
-
18b Johansson CC. C, Colacot TJ. Angew. Chem. Int. Ed. 2010; 49: 676
- 19 Stoltz BM, Mohr JR In Science of Synthesis. Vol. 3. De Vries JG, Molander GA, Evans PA. Thieme; Stuttgart: 2010: 666-674
- 20a Hiroi K, Suya K, Sato S. J. Chem. Soc., Chem. Commun. 1986; 469
- 20b Hiroi K, Abe J, Suya K, Sato S. Tetrahedron Lett. 1989; 30: 1543
- 20c Hiroi K, Abe J, Suya K, Sato S, Koyama T. J. Org. Chem. 1994; 59: 203
- 21 Ibrahem I, Córdova A. Angew. Chem. Int. Ed. 2006; 45: 1952; the reaction shown in Equation 3 is described in the supporting information
- 22a Helmchen G, Dahnz A, Dübon P, Schelwies M, Weihofen R. Chem. Commun. 2007; 675
- 22b Hartwig JF, Pouy MJ. Top. Organomet. Chem. 2011; 34: 169
- 23 Weix D, Hartwig JF. J. Am. Chem. Soc. 2007; 129: 7720
- 24 Liu D, Xie F, Zhang W. Tetrahedron Lett. 2007; 48: 7591
- 25 Zhao X, Liu D, Xie F, Liu Y, Zhang W. Org. Biomol. Chem. 2011; 9: 1871
- 26 Mukherjee S, List B. J. Am. Chem. Soc. 2007; 129: 11336
- 27 Krautwald S, Sarlah D, Schafroth MA, Carreira EM. Science 2013; 340: 1065
- 28 Chen J.-P, Peng Q, Lei B.-L, Hou X.-L, Wu Y.-D. J. Am. Chem. Soc. 2011; 133: 14180
-
29 Trost BM, Keinan E. Tetrahedron Lett. 1980; 21: 2591
- 30 Tsuji J, Minami I, Shimizu I. Chem. Lett. 1983; 12: 1325
- 31 Saitoh A, Achiwa K, Morimoto T. Tetrahedron: Asymmetry 1998; 9: 741
- 32 Hegedus LS, Darlington WH, Russell CE. J. Org. Chem. 1980; 45: 5193
- 33 Behenna DC, Stoltz BM. J. Am. Chem. Soc. 2004; 126: 15044
- 34 Cheon CH, Kanno O, Toste FD. J. Am. Chem. Soc. 2011; 133: 13248
- 35 Graening T, Hartwig JF. J. Am. Chem. Soc. 2005; 127: 17192
- 36 Bélanger É, Cantin K, Messe O, Tremblay M, Paquin J.-F. J. Am. Chem. Soc. 2007; 129: 1034
- 37 For a recent review, see: Weaver JD, Recio III A, Grenning AJ, Tunge JA. Chem. Rev. 2011; 111: 1846
-
38a Tsuda T, Chujo Y, Nishi S, Tawara K, Saegusa T. J. Am. Chem. Soc. 1980; 102: 6381
- 38b Shimizu I, Yamada T, Tsuji J. Tetrahedron Lett. 1980; 21: 3199
- 39a Mohr JT, Behenna DC, Harned AM, Stoltz BM. Angew. Chem. Int. Ed. 2005; 44: 6924
- 39b Nakamura M, Hajra A, Endo K, Nakamura E. Angew. Chem. Int. Ed. 2005; 44: 7248
- 40 Enquist Jr. JA, Stoltz BM. Nature 2008; 453: 1228
- 41 Reeves CM, Eidamshaus C, Kim J, Stoltz BM. Angew. Chem. Int. Ed. 2013; 52: 6718
- 42 Trost BM, Xu J. J. Am. Chem. Soc. 2005; 127: 2846
- 43 Trost BM, Xu J. J. Am. Chem. Soc. 2005; 127: 17180
- 44 Trost BM, Xu J, Reichle M. J. Am. Chem. Soc. 2007; 129: 282
- 45 Trost BM, Xu J, Schmidt T. J. Am. Chem. Soc. 2008; 130: 11852
- 46 Trost BM, Lehr K, Michaelis DJ, Xu J, Buckl AK. J. Am. Chem. Soc. 2010; 132: 8915
- 47 Trost BM, Michaelis DJ, Charpentier J, Xu J. Angew. Chem. Int. Ed. 2012; 51: 204
- 48 Trost BM, Xu J, Schmidt T. J. Am. Chem. Soc. 2009; 131: 18343
- 49 Keith JA, Behenna DC, Mohr JT, Ma S, Marinescu SC, Oxgaard J, Stoltz BM, Goddard III WA. J. Am. Chem. Soc. 2007; 129: 11876
- 50 Brozek LA, Ardolino MJ, Morken JP. J. Am. Chem. Soc. 2011; 133: 16778
- 51 Burger EC, Tunge JA. Org. Lett. 2004; 6: 4113
- 52 Burger EC, Tunge JA. Chem. Commun. 2005; 2835
- 53 Conservation of enantiomeric excess (cee) = (ee of product/ee of starting material) × 100.
- 54 Constant S, Tortoioli S, Müller J, Lacour J. Angew. Chem. Int. Ed. 2007; 46: 2082
- 55 He H, Zheng X.-J, Li Y, Dai L.-X, You S.-L. Org. Lett. 2007; 9: 4339
-
56 Negishi E, Matsushita H, Chatterjee S, John RA. J. Org. Chem. 1982; 47: 3188
- 57 Kimura M, Horino Y, Mukai R, Tanaka S, Tamaru Y. J. Am. Chem. Soc. 2001; 123: 10401
- 58 Trost BM, Schroeder GM. J. Am. Chem. Soc. 1999; 121: 6759
- 59 You S.-L, Hou X.-L, Dai L.-X, Zhu X.-Z. Org. Lett. 2001; 3: 149
- 60 For a review on rhodium-catalyzed allylic substitution reactions, see: Evans PA, Leahy DK. In Modern Rhodium-Catalyzed Organic Reactions . Evans PA. Wiley-VCH; Weinheim: 2005. Chap. 10, 191-214
- 61a Evans PA, Leahy DK. J. Am. Chem. Soc. 2003; 125: 8974
- 61b Evans PA, Lawler MJ. J. Am. Chem. Soc. 2004; 126: 8642
- 61c Evans PA, Leahy DK, Slieker LM. Tetrahedron: Asymmetry 2003; 14: 3613
- 62 Kazmaier U, Stolz D. Angew. Chem. Int. Ed. 2006; 45: 3072
- 63 Jarugumilli GK, Cook SP. Org. Lett. 2011; 13: 1904
- 64 Braun M, Laicher F, Meier T. Angew. Chem. Int. Ed. 2000; 39: 3494
- 65 Trost BM, Schroeder GM, Kristensen J. Angew. Chem. Int. Ed. 2002; 41: 3492
- 66 Fiaud J.-C, Malleron J.-L. J. Chem. Soc., Chem. Commun. 1981; 1159
- 67 Trost BM, Ariza X. J. Am. Chem. Soc. 1999; 121: 10727
- 68 Trost BM, Dogra K. J. Am. Chem. Soc. 2002; 124: 7256
- 69 Trost BM, Dogra K, Franzini M. J. Am. Chem. Soc. 2004; 126: 1944
- 70 Braun M, Meier T. Synlett 2005; 2968
- 71 Seebach D. Angew. Chem., Int. Ed. Engl. 1988; 27: 1624
- 72a Meletis P, Patil M, Thiel W, Frank W, Braun M. Chem. Eur. J. 2011; 17: 11243
- 72b Patil M, Thiel W. Chem. Eur. J. 2012; 18: 10408
- 73 Yan X.-X, Liang C.-G, Zhang Y, Hong W, Cao B.-X, Dai L.-X, Hou X.-L. Angew. Chem. Int. Ed. 2005; 44: 6544
- 74 Zheng W.-H, Zheng B.-H, Zhang Y, Hou X.-L. J. Am. Chem. Soc. 2007; 129: 7718
- 75 Lei B.-L, Ding C.-H, Yang X.-F, Wan X.-L, Hou X.-L. J. Am. Chem. Soc. 2009; 131: 18250
- 76 Zhang K, Peng Q, Hou X.-L, Wu Y.-D. Angew. Chem. Int. Ed. 2008; 47: 1741
- 77 Chen J.-P, Ding C.-H, Liu W, Hou X.-L, Dai L.-X. J. Am. Chem. Soc. 2010; 132: 15493
- 78 Evans PA, Clizbe EA, Lawler MJ, Oliver S. Chem. Sci. 2012; 3: 1835
-
79 Seebach D. Angew. Chem., Int. Ed. Engl. 1979; 18: 239
- 80 Tamaru Y, Yasui K, Takanabe H, Tanaka S, Fugami K. Angew. Chem., Int. Ed. Engl. 1992; 31: 645
- 81 Hanzawa Y, Tabuchi N, Taguchi T. Tetrahedron Lett. 1998; 39: 6249
- 82 Obora Y, Ogawa Y, Imai Y, Kawamura T, Tsuji Y. J. Am. Chem. Soc. 2001; 123: 10489
- 83 Obora Y, Nakanishi M, Tokunaga M, Tsuji Y. J. Org. Chem. 2002; 67: 5835
- 84 Förster S, Tverskoy O, Helmchen G. Synlett 2008; 2803
- 85 Trost BM, Osipov M, Kaib PS. J, Sorum MT. Org. Lett. 2011; 13: 3222
For general reviews on allylic substitution, see:
For recent reviews on metal-catalyzed asymmetric allylic alkylation with enolates, see:
For highlights of the enantioselective metal-catalyzed allylation, see:
Pd:
Cu:
Fe:
Mo:
Ni:
W:
Rh:
Ru:
Ir:
For reviews, see:
For recent reviews on asymmetric iridium-catalyzed allylic substitution reactions, see: