Synthesis 2013; 45(23): 3179-3198
DOI: 10.1055/s-0033-1338538
review
© Georg Thieme Verlag Stuttgart · New York

Transition-Metal-Catalyzed Allylic Substitution Reactions: Stereoselective Construction of α- and β-Substituted Carbonyl Compounds

Samuel Oliver
a   Department of Chemistry, The University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
,
P. Andrew Evans*
b   Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, ON, K7L 3N6, Canada   Fax: +1(610)5336669   Email: Andrew.Evans@chem.queensu.ca
› Author Affiliations
Further Information

Publication History

Received: 11 May 2013

Accepted after revision: 19 July 2013

Publication Date:
18 November 2013 (online)


Dedicated to Professor Andrew B. Holmes on the occasion of his 70th birthday

Abstract

The stereoselective synthesis of α- and β-substituted carbonyl compounds remains a significant area of interest in organic chemistry. This is largely due to their ubiquity and versatility as synthetic intermediates and the importance of this functionality in a range of biologically important agents. In this context, the transition-metal-catalyzed allylic substitution provides an extremely powerful tool for the asymmetric construction of a variety of α- and β-tertiary and quaternary substituted carbonyl compounds. This review highlights pertinent historical developments of these reactions, from the seminal work with enolate equivalents to the more recent developments with unstabilized enolates and acyl anions. It also outlines the most important mechanistic aspects of these transformations in order to provide insight into the current scope and limitations and potential areas for further development.

1 Introduction

2 Unstabilized Enolate Nucleophiles

2.1 Enolate Equivalents

2.1.1 Enamines

2.1.2 Imines

2.1.3 Silyl Enol Ethers

2.1.4 Enolstannanes

2.1.5 Decarboxylative Approaches

2.2 Metal Enolates

2.2.1 Boron Enolates

2.2.2 Tin Enolates

2.2.3 Copper Enolates

2.2.4 Zinc Enolates

2.2.5 Magnesium Enolates

2.2.6 Sodium Enolates

2.2.7 Lithium Enolates

3 Acyl Anion Equivalents

3.1 Acylmetal Nucleophiles

3.2 ‘Masked’ Acyl Anion Equivalents

4 Conclusions

 
  • References

  • 1 Tsuji J, Takahashi H, Morikawa M. Tetrahedron Lett. 1965; 6: 4387

    • For general reviews on allylic substitution, see:
    • 2a Frost CG, Howarth J, Williams JM. J. Tetrahedron: Asymmetry 1992; 3: 1089
    • 2b Trost BM, Van Vranken DL. Chem. Rev. 1996; 96: 395
    • 2c Trost BM, Crawley ML. Chem. Rev. 2003; 103: 2921
    • 2d Lu Z, Ma S. Angew. Chem. Int. Ed. 2008; 47: 258
    • 2e Crawley ML In Science of Synthesis, Stereoselective Synthesis. Vol. 3. Evans PA. Thieme; Stuttgart: 2011: 403-401

      For recent reviews on metal-catalyzed asymmetric allylic alkylation with enolates, see:
    • 3a Braun M, Meier T. Synlett 2006; 661
    • 3b Mohr JT, Stoltz BM. Chem. Asian J. 2007; 2: 1476

    • For highlights of the enantioselective metal-catalyzed allylation, see:
    • 3c You S.-L, Dai L.-X. Angew. Chem. Int. Ed. 2006; 45: 5246
    • 3d Braun M, Meier T. Angew. Chem. Int. Ed. 2006; 45: 6952

      Pd:
    • 4a Atkins KE, Walker WE, Manyik RM. Tetrahedron Lett. 1970; 11: 3821
    • 4b Hata G, Takahashi K, Miyake A. J. Chem. Soc. D, Chem. Commun. 1970; 1392
    • 4c Trost BM, Strege PE. J. Am. Chem. Soc. 1977; 99: 1649

      Cu:
    • 5a Fouquet G, Schlosser M. Angew. Chem., Int. Ed. Engl. 1974; 13: 82
    • 5b van Klaveren M, Persson ES. M, del Villar A, Grove DM, Bäckvall J.-E, van Koten G. Tetrahedron Lett. 1995; 36: 3059

      Fe:
    • 6a Roustan JL, Mérour JY, Houlihan F. Tetrahedron Lett. 1979; 20: 3721
    • 6b Xu Y, Zhou B. J. Org. Chem. 1987; 52: 974
    • 6c Plietker B. Angew. Chem. Int. Ed. 2006; 45: 1469

      Mo:
    • 7a Trost BM, Lautens M. J. Am. Chem. Soc. 1982; 104: 5543
    • 7b Trost BM, Hachiya I. J. Am. Chem. Soc. 1998; 120: 1104

      Ni:
    • 8a Cuvigny T, Julia M. J. Organomet. Chem. 1983; 250: C21
    • 8b Hiyama T, Wakasa N. Tetrahedron Lett. 1985; 26: 3259

      W:
    • 9a Trost BM, Hung M.-H. J. Am. Chem. Soc. 1983; 105: 7757
    • 9b Lloyd-Jones GC, Pfaltz A. Angew. Chem., Int. Ed. Engl. 1995; 34: 462

      Rh:
    • 10a Tsuji J, Minami I, Shimizu I. Tetrahedron Lett. 1984; 25: 5157
    • 10b Evans PA, Nelson JD. J. Am. Chem. Soc. 1998; 120: 5581

      Ru:
    • 11a Zhang S.-W, Mitsudo T, Kondo T, Watanabe Y. J. Organomet. Chem. 1993; 450: 197
    • 11b Matsushima Y, Onitsuka K, Kondo T, Mitsudo T, Takahashi S. J. Am. Chem. Soc. 2001; 123: 10405

      Ir:
    • 12a Takeuchi R, Kashio M. Angew. Chem., Int. Ed. Engl. 1997; 36: 263
    • 12b Janssen JP, Helmchen G. Tetrahedron Lett. 1997; 38: 8025
  • 13 For early examples of unsuccessful palladium-catalyzed allylic substitution reactions using unstabilized carbon nucleophiles, see: Trost BM, Fullerton TJ. J. Am. Chem. Soc. 1973; 95: 292
    • 14a Myers AG, Yang BH, Chen H, McKinstry L, Kopecky DJ, Gleason JL. J. Am. Chem. Soc. 1997; 119: 6496
    • 14b Kummer DA, Chain WJ, Morales MR, Quiroga O, Myers AG. J. Am. Chem. Soc. 2008; 130: 13231
  • 15 Mukherjee S, Yang JW, Hoffmann S, List B. Chem. Rev. 2007; 107: 5471
  • 16 Ooi T, Maruoka K. Angew. Chem. Int. Ed. 2007; 46: 4222
    • 17a Doyle AG, Jacobsen EN. J. Am. Chem. Soc. 2005; 127: 62
    • 17b Doyle AG, Jacobsen EN. Angew. Chem. Int. Ed. 2007; 46: 3701

      For reviews, see:
    • 18a Bellina F, Rossi R. Chem. Rev. 2010; 110: 1082
    • 18b Johansson CC. C, Colacot TJ. Angew. Chem. Int. Ed. 2010; 49: 676
  • 19 Stoltz BM, Mohr JR In Science of Synthesis. Vol. 3. De Vries JG, Molander GA, Evans PA. Thieme; Stuttgart: 2010: 666-674
    • 20a Hiroi K, Suya K, Sato S. J. Chem. Soc., Chem. Commun. 1986; 469
    • 20b Hiroi K, Abe J, Suya K, Sato S. Tetrahedron Lett. 1989; 30: 1543
    • 20c Hiroi K, Abe J, Suya K, Sato S, Koyama T. J. Org. Chem. 1994; 59: 203
  • 21 Ibrahem I, Córdova A. Angew. Chem. Int. Ed. 2006; 45: 1952; the reaction shown in Equation 3 is described in the supporting information

    • For recent reviews on asymmetric iridium-catalyzed allylic substitution reactions, see:
    • 22a Helmchen G, Dahnz A, Dübon P, Schelwies M, Weihofen R. Chem. Commun. 2007; 675
    • 22b Hartwig JF, Pouy MJ. Top. Organomet. Chem. 2011; 34: 169
  • 23 Weix D, Hartwig JF. J. Am. Chem. Soc. 2007; 129: 7720
  • 24 Liu D, Xie F, Zhang W. Tetrahedron Lett. 2007; 48: 7591
  • 25 Zhao X, Liu D, Xie F, Liu Y, Zhang W. Org. Biomol. Chem. 2011; 9: 1871
  • 26 Mukherjee S, List B. J. Am. Chem. Soc. 2007; 129: 11336
  • 27 Krautwald S, Sarlah D, Schafroth MA, Carreira EM. Science 2013; 340: 1065
  • 28 Chen J.-P, Peng Q, Lei B.-L, Hou X.-L, Wu Y.-D. J. Am. Chem. Soc. 2011; 133: 14180
  • 29 Trost BM, Keinan E. Tetrahedron Lett. 1980; 21: 2591
  • 30 Tsuji J, Minami I, Shimizu I. Chem. Lett. 1983; 12: 1325
  • 31 Saitoh A, Achiwa K, Morimoto T. Tetrahedron: Asymmetry 1998; 9: 741
  • 32 Hegedus LS, Darlington WH, Russell CE. J. Org. Chem. 1980; 45: 5193
  • 33 Behenna DC, Stoltz BM. J. Am. Chem. Soc. 2004; 126: 15044
  • 34 Cheon CH, Kanno O, Toste FD. J. Am. Chem. Soc. 2011; 133: 13248
  • 35 Graening T, Hartwig JF. J. Am. Chem. Soc. 2005; 127: 17192
  • 36 Bélanger É, Cantin K, Messe O, Tremblay M, Paquin J.-F. J. Am. Chem. Soc. 2007; 129: 1034
  • 37 For a recent review, see: Weaver JD, Recio III A, Grenning AJ, Tunge JA. Chem. Rev. 2011; 111: 1846
    • 38a Tsuda T, Chujo Y, Nishi S, Tawara K, Saegusa T. J. Am. Chem. Soc. 1980; 102: 6381
    • 38b Shimizu I, Yamada T, Tsuji J. Tetrahedron Lett. 1980; 21: 3199
    • 39a Mohr JT, Behenna DC, Harned AM, Stoltz BM. Angew. Chem. Int. Ed. 2005; 44: 6924
    • 39b Nakamura M, Hajra A, Endo K, Nakamura E. Angew. Chem. Int. Ed. 2005; 44: 7248
  • 40 Enquist Jr. JA, Stoltz BM. Nature 2008; 453: 1228
  • 41 Reeves CM, Eidamshaus C, Kim J, Stoltz BM. Angew. Chem. Int. Ed. 2013; 52: 6718
  • 42 Trost BM, Xu J. J. Am. Chem. Soc. 2005; 127: 2846
  • 43 Trost BM, Xu J. J. Am. Chem. Soc. 2005; 127: 17180
  • 44 Trost BM, Xu J, Reichle M. J. Am. Chem. Soc. 2007; 129: 282
  • 45 Trost BM, Xu J, Schmidt T. J. Am. Chem. Soc. 2008; 130: 11852
  • 46 Trost BM, Lehr K, Michaelis DJ, Xu J, Buckl AK. J. Am. Chem. Soc. 2010; 132: 8915
  • 47 Trost BM, Michaelis DJ, Charpentier J, Xu J. Angew. Chem. Int. Ed. 2012; 51: 204
  • 48 Trost BM, Xu J, Schmidt T. J. Am. Chem. Soc. 2009; 131: 18343
  • 49 Keith JA, Behenna DC, Mohr JT, Ma S, Marinescu SC, Oxgaard J, Stoltz BM, Goddard III WA. J. Am. Chem. Soc. 2007; 129: 11876
  • 50 Brozek LA, Ardolino MJ, Morken JP. J. Am. Chem. Soc. 2011; 133: 16778
  • 51 Burger EC, Tunge JA. Org. Lett. 2004; 6: 4113
  • 52 Burger EC, Tunge JA. Chem. Commun. 2005; 2835
  • 53 Conservation of enantiomeric excess (cee) = (ee of product/ee of starting material) × 100.
  • 54 Constant S, Tortoioli S, Müller J, Lacour J. Angew. Chem. Int. Ed. 2007; 46: 2082
  • 55 He H, Zheng X.-J, Li Y, Dai L.-X, You S.-L. Org. Lett. 2007; 9: 4339
  • 56 Negishi E, Matsushita H, Chatterjee S, John RA. J. Org. Chem. 1982; 47: 3188
  • 57 Kimura M, Horino Y, Mukai R, Tanaka S, Tamaru Y. J. Am. Chem. Soc. 2001; 123: 10401
  • 58 Trost BM, Schroeder GM. J. Am. Chem. Soc. 1999; 121: 6759
  • 59 You S.-L, Hou X.-L, Dai L.-X, Zhu X.-Z. Org. Lett. 2001; 3: 149
  • 60 For a review on rhodium-catalyzed allylic substitution reactions, see: Evans PA, Leahy DK. In Modern Rhodium-Catalyzed Organic Reactions . Evans PA. Wiley-VCH; Weinheim: 2005. Chap. 10, 191-214
    • 61a Evans PA, Leahy DK. J. Am. Chem. Soc. 2003; 125: 8974
    • 61b Evans PA, Lawler MJ. J. Am. Chem. Soc. 2004; 126: 8642
    • 61c Evans PA, Leahy DK, Slieker LM. Tetrahedron: Asymmetry 2003; 14: 3613
  • 62 Kazmaier U, Stolz D. Angew. Chem. Int. Ed. 2006; 45: 3072
  • 63 Jarugumilli GK, Cook SP. Org. Lett. 2011; 13: 1904
  • 64 Braun M, Laicher F, Meier T. Angew. Chem. Int. Ed. 2000; 39: 3494
  • 65 Trost BM, Schroeder GM, Kristensen J. Angew. Chem. Int. Ed. 2002; 41: 3492
  • 66 Fiaud J.-C, Malleron J.-L. J. Chem. Soc., Chem. Commun. 1981; 1159
  • 67 Trost BM, Ariza X. J. Am. Chem. Soc. 1999; 121: 10727
  • 68 Trost BM, Dogra K. J. Am. Chem. Soc. 2002; 124: 7256
  • 69 Trost BM, Dogra K, Franzini M. J. Am. Chem. Soc. 2004; 126: 1944
  • 70 Braun M, Meier T. Synlett 2005; 2968
  • 71 Seebach D. Angew. Chem., Int. Ed. Engl. 1988; 27: 1624
    • 72a Meletis P, Patil M, Thiel W, Frank W, Braun M. Chem. Eur. J. 2011; 17: 11243
    • 72b Patil M, Thiel W. Chem. Eur. J. 2012; 18: 10408
  • 73 Yan X.-X, Liang C.-G, Zhang Y, Hong W, Cao B.-X, Dai L.-X, Hou X.-L. Angew. Chem. Int. Ed. 2005; 44: 6544
  • 74 Zheng W.-H, Zheng B.-H, Zhang Y, Hou X.-L. J. Am. Chem. Soc. 2007; 129: 7718
  • 75 Lei B.-L, Ding C.-H, Yang X.-F, Wan X.-L, Hou X.-L. J. Am. Chem. Soc. 2009; 131: 18250
  • 76 Zhang K, Peng Q, Hou X.-L, Wu Y.-D. Angew. Chem. Int. Ed. 2008; 47: 1741
  • 77 Chen J.-P, Ding C.-H, Liu W, Hou X.-L, Dai L.-X. J. Am. Chem. Soc. 2010; 132: 15493
  • 78 Evans PA, Clizbe EA, Lawler MJ, Oliver S. Chem. Sci. 2012; 3: 1835
  • 79 Seebach D. Angew. Chem., Int. Ed. Engl. 1979; 18: 239
  • 80 Tamaru Y, Yasui K, Takanabe H, Tanaka S, Fugami K. Angew. Chem., Int. Ed. Engl. 1992; 31: 645
  • 81 Hanzawa Y, Tabuchi N, Taguchi T. Tetrahedron Lett. 1998; 39: 6249
  • 82 Obora Y, Ogawa Y, Imai Y, Kawamura T, Tsuji Y. J. Am. Chem. Soc. 2001; 123: 10489
  • 83 Obora Y, Nakanishi M, Tokunaga M, Tsuji Y. J. Org. Chem. 2002; 67: 5835
  • 84 Förster S, Tverskoy O, Helmchen G. Synlett 2008; 2803
  • 85 Trost BM, Osipov M, Kaib PS. J, Sorum MT. Org. Lett. 2011; 13: 3222
    • 86a Evans PA, Oliver S, Chae J. J. Am. Chem. Soc. 2012; 134: 19314
    • 86b Evans PA, Oliver S. Org. Lett. 2013; in press; DOI: 10.1021/ol402336u