Synthesis 2014; 46(03): 295-300
DOI: 10.1055/s-0033-1338571
paper
© Georg Thieme Verlag Stuttgart · New York

Benzoquinone-Promoted Aerobic Oxidative Hydroxylation of Arylboronic Acids in Water

Guolin Cheng
Engineering Research Center of Molecular Medicine, Ministry of Education, Key Laboratory of Xiamen Marine and Gene Drugs, Institute of Molecular Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. of China   Email: cuixl@hqu.edu.cn
,
Xiaobao Zeng
Engineering Research Center of Molecular Medicine, Ministry of Education, Key Laboratory of Xiamen Marine and Gene Drugs, Institute of Molecular Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. of China   Email: cuixl@hqu.edu.cn
,
Xiuling Cui*
Engineering Research Center of Molecular Medicine, Ministry of Education, Key Laboratory of Xiamen Marine and Gene Drugs, Institute of Molecular Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. of China   Email: cuixl@hqu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 10 October 2013

Accepted after revision: 18 November 2013

Publication Date:
05 December 2013 (online)


Abstract

A general and efficient aerobic oxidative hydroxylation of arylboronic acids promoted by benzoquinone in water was realized, and provided phenols in 72–95% yields for 20 examples. The main advantages of this protocol are the use of water as solvent in the presence of a catalytic amount of benzoquinone, and metal-free conditions.

Supporting Information

 
  • References

    • 1a The Chemistry of Phenols . Rappoport Z. Wiley-VCH; Weinheim: 2003
    • 1b Bal R, Tada M, Sasaki T, Iwasawa Y. Angew. Chem. Int. Ed. 2006; 45: 448
  • 2 Tyman JH. P. Synthetic and Natural Phenols . Elsevier; New York: 1996

    • For reviews, see:
    • 3a Suzuki A, Yamamoto Y. Chem. Lett. 2011; 40: 894
    • 3b Suzuki A. Angew. Chem. Int. Ed. 2011; 50: 6722
    • 4a Xu J, Wang X, Shao C, Su D, Cheng G, Hu Y. Org. Lett. 2010; 12: 1964
    • 4b Chowdhury AD, Mobin SM, Mukherjee S, Bhaduri S, Lahiri GK. Eur. J. Inorg. Chem. 2011; 3232
    • 4c Inamoto K, Nozawa K, Yonemoto M, Kondo Y. Chem. Commun. 2011; 47: 11775
    • 4d Yang H, Li Y, Jiang M, Wang J, Fu H. Chem. Eur. J. 2011; 17: 5652
    • 4e Kaboudin B, Abedi Y, Yokomatsu T. Eur. J. Org. Chem. 2011; 6656
    • 4f Zou Y.-Q, Chen J.-R, Liu X.-P, Lu L.-Q, Davis RL, Jørgensen KA, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 784
    • 4g Pitre SP, McTiernan CD, Ismaili H, Scaiano JC. J. Am. Chem. Soc. 2013; 135: 13286
    • 5a Webb KS, Levy D. Tetrahedron Lett. 1995; 36: 5117
    • 5b Simon J, Salzbrunn S, Prakash GK. S, Petasis NA, Olah GA. J. Org. Chem. 2001; 66: 633
    • 5c Prakash GK. S, Chacko S, Panja C, Thomas TE, Gurung L, Rasul G, Mathew T, Olah GA. Adv. Synth. Catal. 2009; 351: 1567
    • 5d Gogoi A, Bora U. Synlett 2012; 23: 1079
    • 5e Mulakayala N, Ismail Kumar KM, Rapolu RK, Kandagatla B, Rao P, Oruganti S, Pal M. Tetrahedron Lett. 2012; 53: 6004
    • 5f Travis BR, Ciaramitaro BP, Borhan B. Eur. J. Org. Chem. 2002; 3429
    • 5g Maleczka RE, Shi F, Holmes D, Smith MR. J. Am. Chem. Soc. 2003; 125: 7792
    • 5h Kianmehr E, Yahyaee M, Tabatabai K. Tetrahedron Lett. 2007; 48: 2713
    • 5i Zhu C, Wang R, Falck JR. Org. Lett. 2012; 14: 3494
    • 6a Hosoi K, Kuriyama Y, Inagi S, Fuchigami T. Chem. Commun. 2010; 46: 1284
    • 6b Jiang H, Lykke L, Pedersen SU, Xiao W.-J, Jørgensen KA. Chem. Commun. 2012; 48: 7203
    • 6c Qj H.-L, Chen D.-S, Ye J.-S, Huang J.-M. J. Org. Chem. 2013; 78: 7482
    • 7a Cammidge AN, Goddard VH. M, Schubert CP. J, Gopee H, Hughes DL, Gonzalez-Lucas D. Org. Lett. 2011; 13: 6034
    • 7b Kaewmati P, Somsook E, Dhital RN, Sakurai H. Tetrahedron Lett. 2012; 53: 6104
    • 8a Anderson KW, Ikawa T, Tundel RE, Buchwald SL. J. Am. Chem. Soc. 2006; 128: 10694
    • 8b Chen G, Chan AS. C, Kwong FY. Tetrahedron Lett. 2007; 48: 473
    • 8c Willis MC. Angew. Chem. Int. Ed. 2007; 46: 3402
    • 8d Gallon BJ, Kojima RW, Kaner RB, Diaconescu PL. Angew. Chem. Int. Ed. 2007; 46: 7251
    • 8e Schulz T, Torborg C, Schaeffner B, Huang J, Zapf A, Kadyrov R, Boerner A, Beller M. Angew. Chem. Int. Ed. 2009; 48: 918
    • 8f Sergeev AG, Schulz T, Torborg C, Spannenberg A, Neumann H, Beller M. Angew. Chem. Int. Ed. 2009; 48: 7595
    • 8g Yu C.-W, Chen GS, Huang C.-W, Chern J.-W. Org. Lett. 2012; 14: 3688
    • 9a Tlili A, Xia N, Monnier F, Taillefer M. Angew. Chem. Int. Ed. 2009; 48: 8725
    • 9b Zhao D, Wu N, Zhang S, Xi P, Su X, Lan J, You J. Angew. Chem. Int. Ed. 2009; 48: 8729
    • 9c Paul R, Ali MA, Punniyamurthy T. Synthesis 2010; 4268
    • 9d Maurer S, Liu W, Zhang X, Jiang Y, Ma D. Synlett 2010; 976
    • 9e Jing L, Wei J, Zhou L, Huang Z, Li Z, Zhou X. Chem. Commun. 2010; 46: 4767
    • 9f Yang D, Fu H. Chem. Eur. J. 2010; 16: 2366
    • 9g Chen J, Yuan T, Hao W, Cai M. Catal. Commun. 2011; 12: 1463
    • 9h Thakur KG, Sekar G. Chem. Commun. 2011; 47: 6692
    • 9i Chan C.-C, Chen Y.-W, Su C.-S, Lin H.-P, Lee C.-F. Eur. J. Org. Chem. 2011; 7288
    • 9j Xu H.-J, Liang Y.-F, Cai Z.-Y, Qi H.-X, Yang C.-Y, Feng Y.-S. J. Org. Chem. 2011; 76: 2296
    • 9k Yang K, Li Z, Wang Z, Yao Z, Jiang S. Org. Lett. 2011; 13: 4340
    • 9l Jia J, Jiang C, Zhang X, Jiang Y, Ma D. Tetrahedron Lett. 2011; 52: 5593
    • 9m Xiao Y, Xu Y, Cheon H.-S, Chae J. J. Org. Chem. 2013; 78: 5804
  • 10 Hydroxylation of organotrifluoroborates: Molander GA, Cavalcanti LN. J. Org. Chem. 2011; 76: 623
    • 11a Xi ZW, Zhou N, Sun Y, Li KL. Science 2001; 292: 1139
    • 11b Radel RJ, Sullivan JM, Hatfleld JD. Ind. Eng. Chem. Prod. Res. Dev. 1982; 21: 566
    • 11c James TH, Snell JM, Welsaberger A. J. Am. Chem. Soc. 1938; 60: 2084
  • 12 Yamaguchi K, Mori K, Mizugaki T, Ebitani K, Kaneda K. J. Org. Chem. 2000; 65: 6897
  • 13 Dibakar M, Prakash A, Selvakumar K, Ruckmani K, Sivakumar M. Tetrahedron Lett. 2011; 52: 5338