Synthesis 2014; 46(11): 1455-1462
DOI: 10.1055/s-0033-1338605
paper
© Georg Thieme Verlag Stuttgart · New York

Facile Synthesis of N-Substituted Amides from Alkenes and Amides by a Brønsted Acid Mediated Electrophilic Addition Reaction

Karin Mihara
Laboratory of Bio-organic Chemistry, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan   Fax: +81(42)3675700   Email: kitayo@cc.tuat.ac.jp
,
Iku Okada
Laboratory of Bio-organic Chemistry, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan   Fax: +81(42)3675700   Email: kitayo@cc.tuat.ac.jp
,
Kazuhiro Chiba
Laboratory of Bio-organic Chemistry, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan   Fax: +81(42)3675700   Email: kitayo@cc.tuat.ac.jp
,
Yoshikazu Kitano*
Laboratory of Bio-organic Chemistry, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan   Fax: +81(42)3675700   Email: kitayo@cc.tuat.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 18 January 2014

Accepted after revision: 19 February 2014

Publication Date:
03 April 2014 (online)


Abstract

A facile and widely applicable method for the synthesis of N-substituted amides from alkenes and amides using Brønsted acids was developed. Treatment of various alkenes with amides and an alkali metal halide or methanesulfonic acid in trifluoroacetic acid afforded the corresponding N-substituted amides in good to high yield. The reaction proceeds via the direct electrophilic addition of the amides to the alkenes. Various functional groups such as ester, ether, imide, amide, and halogen were tolerated under the reaction conditions. High substrate-dependent cis stereoselectivity in the synthesis was also observed for methylenecyclohexane and methylcyclohexene derivatives possessing a substituent at the 4-position. Furthermore, a practical application of this reaction has been demonstrated by the synthesis of an intermediate of a bioactive compound on a large scale.

Supporting Information