Subscribe to RSS
DOI: 10.1055/s-0033-1338605
Facile Synthesis of N-Substituted Amides from Alkenes and Amides by a Brønsted Acid Mediated Electrophilic Addition Reaction
Publication History
Received: 18 January 2014
Accepted after revision: 19 February 2014
Publication Date:
03 April 2014 (online)
Abstract
A facile and widely applicable method for the synthesis of N-substituted amides from alkenes and amides using Brønsted acids was developed. Treatment of various alkenes with amides and an alkali metal halide or methanesulfonic acid in trifluoroacetic acid afforded the corresponding N-substituted amides in good to high yield. The reaction proceeds via the direct electrophilic addition of the amides to the alkenes. Various functional groups such as ester, ether, imide, amide, and halogen were tolerated under the reaction conditions. High substrate-dependent cis stereoselectivity in the synthesis was also observed for methylenecyclohexane and methylcyclohexene derivatives possessing a substituent at the 4-position. Furthermore, a practical application of this reaction has been demonstrated by the synthesis of an intermediate of a bioactive compound on a large scale.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synthesis.
- Supporting Information
-
References
- 1a Allen CL, Williams JM. J. Chem. Soc. Rev. 2011; 40: 3405
- 1b Kobayashi G, Saito T, Kitano Y. Synthesis 2011; 3225
- 1c Jo Y, Ju J, Cheo J, Song KH, Lee S. J. Org. Chem. 2009; 74: 6358
- 1d Carey JS, Laffan D, Thomson C, Williams MT. Org. Biomol. Chem. 2006; 4: 2337
- 1e Humphrey JM, Chamberlin AR. Chem. Rev. 1997; 97: 2243
- 2a Gaudin JM, Lander T, Nikolaenko O. Chem. Biodiversity 2008; 5: 617
- 2b Cupido T, Tulla-Puche J, Spengler J, Albericio F. Curr. Opin. Drug Discovery Dev. 2007; 10: 768
- 2c Ghose AK, Viswanadhan VN, Wendoloski JJ. J. Comb. Chem. 1999; 1: 55
- 3a Ugi I, Werner B, Dömling A. Molecules 2003; 8: 53
- 3b Ugi I. Angew. Chem., Int. Ed. Engl. 1962; 1: 8
- 3c Passerini M. Gazz. Chim. Ital. 1921; 51: 181
- 4a Kitano Y, Akima C, Yoshimura E, Nogata Y. Biofouling 2011; 27: 201
- 4b Kitano Y, Nogata Y, Shinshima K, Yoshimura E, Chiba K, Tada M, Sakaguchi I. Biofouling 2004; 20: 93
- 4c Nogata Y, Kitano Y, Yoshimura E, Shinshima K, Sakaguchi I. Biofouling 2004; 20: 87
- 4d Kitano Y, Yokoyama A, Nogata Y, Shinshima K, Yoshimura E, Chiba K, Tada M, Sakaguchi I. Biofouling 2003; 19: 187
- 4e Kitano Y, Ito T, Suzuki T, Nogata Y, Shinshima K, Yoshimura E, Chiba K, Tada M, Sakaguchi I. J. Chem. Soc., Perkin Trans. 1 2002; 2251
- 5 Koning CM, Wright AD, Angerhofer CK. J. Org. Chem. 1996; 61: 3259
- 6a Guérinot A, Reymond S, Cossy J. Eur. J. Org. Chem. 2012; 19
- 6b Ritter JJ, Kalish J. J. Am. Chem. Soc. 1948; 70: 4048
- 6c Ritter JJ, Minieri PP. J. Am. Chem. Soc. 1948; 70: 4045
- 7 Okada I, Chiba K, Kitano Y. Synthesis 2013; 45: 1069
- 8 Kitano Y, Chiba K, Tada M. Synthesis 2001; 437
- 9 Cren S, Schär P, Renaud P, Schenk K. J. Org. Chem. 2009; 74: 2942
- 10 Frija LM. T, Afonso CA. M. Tetrahedron 2012; 68: 7414
- 11 Pan Y, Calvert K, Silverman RB. Bioorg. Med. Chem. 2004; 12: 5719