RSS-Feed abonnieren
DOI: 10.1055/s-0033-1338614
Synthesis of Pyridine Acrylates and Acrylamides and Their Corresponding Pyridinium Ions as Versatile Cross-Linkers for Tunable Hydrogels
Publikationsverlauf
Received: 19. Dezember 2013
Accepted after revision: 05. Februar 2014
Publikationsdatum:
06. März 2014 (online)
In memoriam Alan R. Katritzky
Abstract
A small library of cross-linkers for hydrogels was synthesized. The cross-linkers consisted of 2,6- and 3,5-diacylpyridine or 2,4,6-triacylpyridine as the core unit, which were tethered via ethylene glycol, amino ethanol, and 1,n-diamine spacers to terminal acrylate or acrylamide moieties. Esterification and amide formation of the terminal acryl units were found to be dependent on the ratio of NH/O in the spacer, the constitution pattern of the pyridine ring, and the total number of acryl groups. Thus, esters generally gave higher yields than amides decreasing with increasing number of NH in the spacer and with increasing number of acryl units. In the case of 3,5-diacylpyridine derivatives, these trends were less prominent as compared to the 2,6-diacylpyridine series, indicating that steric hindrance and unfavorable hydrogen bonding interaction of the spacers might influence the observed reactivity differences. The 3,5-diacylpyridines were converted to the N-methylpyridinium salts and selected members of both neutral and cationic 3,5-diacylpyridinium derivatives were submitted to hydrogelations with synthetic polymer poly(1-glycidylpiperazine) via aza-Michael addition and thiolated natural hyaluronan via thio-Michael reaction, respectively. Rheological properties of the resulting hydrogels were studied, revealing that both spacer type as well as charge affected elastic moduli and degree of swelling.
Key words
acylation - alkylation - biomimetic synthesis - polyanions - pyridines - cross-linkers - hydrogelsSupporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synthesis.
- Supporting Information
-
References
- 1a Kopeček J, Yang J. Angew. Chem. Int. Ed. 2012; 51: 7396 ; Angew. Chem. 2012, 124, 7512
- 1b van Vlierberghe S, Dubruel P, Schacht E. Biomacromolecules 2011; 12: 1387
- 1c Bashur CA, Venkataraman L, Ramamurthi A. Tissue Eng. Part B Rev. 2012; 18: 203
- 2a Chen YM, Ogawa R, Kakugo A, Osada Y, Gong JP. Soft Matter 2009; 5: 1804
- 2b Schneider GB, English A, Abraham M, Zaharias R, Stanford C, Keller J. Biomaterials 2004; 25: 3023
- 2c Li H, Lai F. Anal. Bioanal. Chem. 2011; 399: 1233
- 2d Tan F, Xu X, Deng T, Yin M, Zhang X, Wang J. Biomed. Mater. 2012; 7: 55009
- 2e Schillemans JP, Hennink WE, van Nostrum CF. Eur. J. Pharm. Biopharm. 2010; 76: 329
- 2f Smith MH, Lyon LA. Macromolecules 2011; 44: 8154
- 2g Chen YM, Gong JP, Tanaka M, Yasuda K, Yamamoto S, Shimomura M, Osada Y. J. Biomed. Mater. Res. 2009; 88: 74
- 3 Amitai G, Murata H, Andersen JD, Koepsel RR, Russell AJ. Biomaterials 2010; 31: 4417
- 4 Krishnan S, Finlay JA, Hexemer A, Wang N, Ober CK, Kramer EJ, Callow ME, Callow JA, Fischer D. Polym. Prepr. 2005; 46: 1248
- 5 Hughes G, Bryce MR. J. Mater. Chem. 2005; 15: 94
- 6 Wang YZ, Epstein AJ. Acc. Chem. Res. 1999; 32: 217
- 7 Yoshida M. Chem. Record 2010; 10: 230
- 8 Stavrouli N, Aubry T, Tsitsilianis C. Polymer 2008; 49: 1249
- 9 Wang Q, Mynar JL, Yoshida M, Lee E, Lee M, Okuro K, Kinbara K, Aida T. Nature 2010; 463: 339
- 10 Southan A, Mateescu M, Hagel V, Bach M, Schuh C, Kleinhans C, Kluger PJ, Tussetschläger S, Nuss I, Haraszti T, Wegner SV, Spatz JP, Boehm H, Laschat S, Tovar GE. M. Macromol. Chem. Phys. 2013; 214: 1865
- 11 Hagel V, Mateescu M, Southan A, Wegner SV, Nuss I, Haraszti T, Kleinhans C, Schuh C, Spatz JP, Kluger PJ, Bach M, Tussetschläger S, Tovar GE. M, Laschat S, Boehm H. Nature Sci. Rep. 2013; 3: 2043
- 12 Hennink W, van Nostrum C. Adv. Drug Deliver. Rev. 2002; 54: 13
- 13 Shu XZ, Liu Y, Palumbo FS, Luo Y, Prestwich GD. Biomaterials 2004; 25: 1339
- 14 Schultz KM, Baldwin AD, Kiick KL, Furst EM. Macromolecules 2009; 42: 5310
- 15a Rulev AY. Russ. Chem. Rev. 2011; 80: 197
- 15b Rizzi SC, Hubbell JA. Biomacromolecules 2005; 6: 1226
- 16 Hobson LJ, Feast W. Polymer 1999; 40: 1279
- 17 Kimura S, Ikeda M, Shimizu Y, Matsumoto S, Komatsu H, Tamaru S.-i, Takigawa T, Hamachi I. Macromol. Biosci. 2008; 8: 1019
- 18 Chuchuryukin AV, Chase PA, Dijkstra HP, Suijkerbuijk BM. J. M, Mills AM, Spek AL, van Klink GP. M, van Koten G. Adv. Synth. Catal. 2005; 347: 447
- 19 Okawa T, Osakada N, Eguchi S, Kakehi A. Tetrahedron 1997; 53: 16061
- 20 Cynamon MH, Gimi R, Gyenes F, Sharpe CA, Bergmann KE, Han HJ, Gregor LB, Rapolu R, Luciano G, Welch JT. J. Med. Chem. 1995; 38: 3902
- 21 Neises B, Steglich W. Angew. Chem., Int. Ed. Engl. 1978; 17: 522 ; Angew. Chem. 1978, 90, 556
- 22a Katritzky AR, Ramsden CA, Joule JA, Zhdankin VV In Handbook of Heterocyclic Chemistry . Katritzky AR, Ramsden CA, Joule JA, Zhdankin VV. Elsevier; Oxford: 2010: 242-382
- 22b Wang X.-B, Dacres JE, Yang X, Broadus KM, Lis L, Wang L.-S, Kass SR. J. Am. Chem. Soc. 2003; 125: 296
- 23 Berg U, Gallo R, Klatte G, Metzger J. J. Chem. Soc., Perkin Trans. 2 1980; 1350
- 24 Vanderhooft JL, Alcoutlabi M, Magda JJ, Prestwich GD. Macromol. Biosci. 2009; 9: 20
- 25a Ghosh SK, Bharadwaj PK. J. Chem. Sci. 2005; 117: 23
- 25b Shi Q, Zhang S, Wang Q, Ma H, Yang G, Sun W.-H. J. Mol. Struct. 2007; 837: 185
- 26 Jeong B, Bae YH, Kim SW. Macromolecules 1999; 32: 7064
- 27 Shu XZ, Liu Y, Luo Y, Roberts MC, Prestwich GD. Biomacromolecules 2002; 3: 1304