Synlett 2013; 24(11): 1383-1386
DOI: 10.1055/s-0033-1338951
letter
© Georg Thieme Verlag Stuttgart · New York

A Novel Highly Site-Selective Synthesis of 2,4,7-Triarylpyrrolo[2,3-d]pyrimidines by a Combination of Palladium(0)-, Nickel(0)-, and Copper(I)-Catalyzed Cross-Coupling Reactions

Rytis V. Urbonas
Vilnius University, Faculty of Chemistry, Department of Organic Chemistry, Naugarduko 24, 03225 Vilnius, Lithuania   Fax: +370(5)2330987   Email: sigitas.tumkevicius@chf.vu.lt
,
Vilius Poskus
Vilnius University, Faculty of Chemistry, Department of Organic Chemistry, Naugarduko 24, 03225 Vilnius, Lithuania   Fax: +370(5)2330987   Email: sigitas.tumkevicius@chf.vu.lt
,
Jonas Bucevicius
Vilnius University, Faculty of Chemistry, Department of Organic Chemistry, Naugarduko 24, 03225 Vilnius, Lithuania   Fax: +370(5)2330987   Email: sigitas.tumkevicius@chf.vu.lt
,
Jelena Dodonova
Vilnius University, Faculty of Chemistry, Department of Organic Chemistry, Naugarduko 24, 03225 Vilnius, Lithuania   Fax: +370(5)2330987   Email: sigitas.tumkevicius@chf.vu.lt
,
Sigitas Tumkevicius*
Vilnius University, Faculty of Chemistry, Department of Organic Chemistry, Naugarduko 24, 03225 Vilnius, Lithuania   Fax: +370(5)2330987   Email: sigitas.tumkevicius@chf.vu.lt
› Author Affiliations
Further Information

Publication History

Received: 25 March 2013

Accepted after revision: 25 April 2013

Publication Date:
06 June 2013 (online)


Abstract

An efficient highly site-selective synthesis of 2,4,7-triarylpyrrolo[2,3-d]pyrimidines from 4-chloro-2-methylthiopyrrolo[2,3-d]pyrimidine has been developed. The proposed synthetic pathway is based on three sequential arylation reactions: Suzuki coupling at position 4 of pyrrolo[2,3-d]pyrimidine, copper(I)-catalyzed N(7)-arylation and nickel(0)-catalyzed desulfitative reaction of 2-methylthio group with aryl Grignard reagents.

 
  • References and Notes

    • 1a Khoje AD, Kulendrn A, Charnock C, Wan B, Franzblau S, Gundersen L.-L. Bioorg. Med. Chem. 2010; 18: 7274
    • 1b Mohamed MS, El-Domany RA, El-Hameed RH. A. Acta Pharm. 2009; 59: 145
    • 1c Chen Z, Venkatesan AM, Dehnhardt CM, Ayral-Kaloustian S, Brooijmans N, Mallon R, Feldberg L, Hollander I, Lucas J, Yu K, Kong F, Mansour TS. J. Med. Chem. 2010; 53: 3169
    • 1d Lin Q, Meloni D, Pan Y, Xia M, Rodgers J, Shepard S, Li M, Galya L, Metcalf B, Yue T.-Y, Liu P, Zhou J. Org. Lett. 2009; 11: 1999
    • 1e Wang T, Ledeboer MW, Duffy JP, Salituro FG, Pierce AC, Zuccola HJ, Block E, Shlyakter D, Hogan JK, Bennani JL. Bioorg. Med. Chem. Lett. 2010; 20: 153
    • 1f Calderwood DJ, Johnston DN, Munschauer R, Rafferty P. Bioorg. Med. Chem. Lett. 2002; 12: 1683
    • 1g Gibson CL, Huggan JK, Kennedy A, Kiefer L, Lee JH, Suckling CJ, Clements C, Harvey AL, Hunter WN, Tulloch LB. Org. Biomol. Chem. 2009; 7: 1829
    • 1h Hess S, Müller CE, Frobenius W, Reith U, Klotz K.-N, Eger K. J. Med. Chem. 2000; 43: 4636
    • 1i Gillespie RJ, Cliffe IA, Dawson CE, Dourish CT, Gaur S, Jordan AM, Knight AR, Lerpiniere J, Misra A, Pratt RM, Roffey J, Stratton GC, Upton R, Weiss SM, Williamson DS. Bioorg. Med. Chem. Lett. 2008; 18: 2924
    • 1j Naus P, Pohl R, Votruba I, Dzubak P, Hajduch M, Ameral R, Birkus G, Wang T, Ray AS, Mackman R, Cihlar T, Hocek M. J. Med. Chem. 2010; 53: 460
    • 1k Perlikova P, Pohl R, Votruba I, Shih R, Birkus G, Cihlar T, Hocek M. Bioorg. Med. Chem. 2011; 19: 229
    • 2a McKeen CM, Brown LJ, Nicol JT. G, Mellor JM, Brown T. Org. Biomol. Chem. 2003; 1: 2267
    • 2b Saito Y, Miyauchi Y, Okamoto A, Saito I. Chem. Commun. 2004; 1704
    • 2c Meng Q, Kim DH, Bai X, Bi L, Turro NJ, Ju J. J. Org. Chem. 2006; 71: 3248
    • 2d Varghese R, Gajula PK, Chakraborty TK, Wagenknecht H.-A. Synlett 2009; 3252
    • 2e Riedl J, Horáková P, Sebest P, Pohl R, Havran L, Fojta M, Hocek M. Eur. J. Org. Chem. 2009; 3519
    • 2f Harvey JH, Butler BK, Trauner D. Tetrahedron Lett. 2007; 48: 1661
    • 2g Singer M, Jäschke A. J. Am. Chem. Soc. 2010; 132: 8372
    • 3a Tumkevicius S, Dodonova J, Kazlauskas K, Masevicius V, Skardziute L, Jursenas S. Tetrahedron Lett. 2010; 51: 3902
    • 3b Dodonova J, Skardziute L, Kazlauskas K, Jursenas S, Tumkevicius S. Tetrahedron 2012; 68: 329
    • 4a Anctil EJ.-G, Snieckus V In Metal-Catalyzed Cross-Coupling Reactions . Vol. 2. de Meiejere A, Diederich F. Wiley-VCH; Weinheim: 2004: 761
    • 4b Knochel P, Sapountzis I, Gommermann N In Metal-Catalyzed Cross-Coupling Reactions . Vol. 2. de Meiejere A, Diederich F. Wiley-VCH; Weinheim: 2004: 671
    • 4c Takahashi T, Kanno K In Modern Organonickel Chemistry . Tamaru Y. Wiley-VCH; Weinheim: 2005: 41
    • 4d Gholap AR, Toti KS, Shirazi F, Deshpande MV, Srinivasan KV. Tetrahedron 2008; 64: 10214
    • 4e Li J.-H, Zhang X.-D, Xie Y.-X. Synlett 2005; 1897
    • 4f Yin J, Rainka MP, Zhang X.-X, Buchwald SL. J. Am. Chem. Soc. 2002; 124: 1162
    • 4g Kotha S, Lahiri K, Kashinath D. Tetrahedron 2002; 58: 9633
    • 4h Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
    • 4i Suzuki A. J. Organomet. Chem. 1999; 576: 147
    • 4j Bellina F, Carpita A, Rossi R. Synthesis 2004; 2419
    • 4k Schroter S, Stock C, Bach T. Tetrahedron 2005; 61: 2245
    • 4l Fairlamb IJ. S. Chem. Soc. Rev. 2007; 36: 1036
    • 4m Tumkevicius S, Dodonova J. Chem. Heterocycl. Compd. 2012; 48: 258
  • 5 Tumkevicius S, Dodonova J. Synlett 2011; 1705
  • 6 Lupke U, Seela F. Chem. Ber. 1979; 112: 3432
    • 7a Kanemura S, Kondoh A, Yorimitsu H, Oshima K. Synthesis 2008; 2659
    • 7b Itami K, Yamazaki D, Yoshida J. J. Am. Chem. Soc. 2004; 126: 15396
    • 7c Dubbaka SR, Vogel P. Angew. Chem. Int. Ed. 2005; 44: 7674
    • 7d Venkatesh C, Singh B, Mahata PK, Ila H, Junjappa H. Org. Lett. 2005; 7: 2169
    • 7e Milburn RR, Snieckus V. Angew. Chem. Int. Ed. 2004; 43: 888
  • 8 7-(tert-Butoxycarbonyl)-4-chloro-2-methylthio-7H-pyrrolo[2,3-d]pyrimidine (2) To a solution of 1 (100 mg, 0,50 mmol) in anhyd CH2Cl2 (2 mL) DIPEA (77.4 mg, 0.60 mmol), DMAP (12.2 mg, 0.10 mmol), and Boc2O (164 mg, 0,752 mmol) was added. The reaction mixture was stirred at r.t. for 30 min. After evaporation of CH2Cl2 the residue was dissolved in CHCl3 and filtered through a layer of silica gel. After evaporation of the CHCl3 the solid was recrystallized to give 142 mg (95%) of compound 2; mp 104–105 °C (from 2-PrOH). IR (KBr): ν = 1748 (C=O) cm–1. 1H NMR (300 MHz, CDCl3): δ = 1.71 [s, 9 H, C(CH3)3], 2.67 (s, 3 H, SCH3), 6.57 (d, J = 4 Hz, 1 H, 5-H), 7.61 (d, J = 4 Hz, 1 H, 6-H). 13C NMR (75 MHz, CDCl3): δ = 14.9, 28.4, 85.8, 103.1, 116.3, 126.2, 147.9, 152.7, 152.8, 167.6. Anal. Calcd for C12H14ClN3O2S: C, 48.08; H, 4.71; N, 14.02. Found: C, 48.07; H, 4.73; N, 13.68.
  • 9 Representative Procedure for the Preparation of 4-Aryl-7-tert-butoxycarbonyl-2-methylthio-7H-pyrrolo[2,3-d]pyrimidines 3a–c Compound 3a: A solution of 2 (100 mg, 0.33 mmol) in anhyd dioxane (2 mL) was flushed with argon and 2-biphenyldicyclohexylphosphine (4 mol%) and Pd(OAc)2 (2 mol%) were added. The mixture was stirred for 10 min, then phenylboronic acid (48.8 mg, 0.4 mmol) and K3PO4 (169.8 mg, 0.8 mmol) were added under argon flow, and the reaction mixture was refluxed for 1 h. After cooling the solvent was removed to dryness, the residue dissolved in H2O (5 mL), and the solution obtained was extracted with CHCl3. The extract was dried over Na2SO4, filtered, and the CHCl3 was removed on the rotary evaporator. The residue was purified by column chromatography (eluent CHCl3) to give 93.5 mg (83%) of compound 3a; mp 82.5–83 °C. 1H NMR (300 MHz, CDCl3): δ = 1.72 [s, 9 H, C(CH3)3], 2.73 (s, 3 H, SCH3), 6.78 (d, J = 4 Hz, 1 H, 5-H), 7.52–7.54 (m, 3 H, ArH), 7.62 (d, J = 4 Hz, 1 H, 6-H), 8.05 (d, J = 9 Hz, 2 H, ArH). 13C NMR (75 MHz, CDCl3): δ = 14.9, 85.2, 104.3, 125.9, 129.0, 129.2, 130.6, 137.5, 148.4, 153.8, 158.6, 167.4. Anal. Calcd for C18H19N3O2S: C, 63.32; H, 5.61; N, 12.31. Found: C, 62.95; H, 5.63; N, 12.03
  • 10 Representative Procedure for the Preparation of 4-Aryl-2-methylthio-7H-pyrrolo[2,3-d]pyrimidines 4a–c Compound 4a: To a solution of 3a (270 mg, 0.79 mmol) in anhyd CH2Cl2 (5 mL) TFA (8.5 mL, 114.6 mmol) was added. The reaction mixture was stirred for 30 min, then concentrated to dryness under reduced pressure. H2O was added to the residue, and the solid obtained was recrystallized to give 165 mg (86%) of compound 4a; mp 221–222 °C (from 2-PrOH). 1H NMR (300 MHz, CDCl3 + DMSO-d 6): δ = 2.59 (s, 3 H, SCH3), 6.66 (dd, J = 4, 2 Hz, 1 H, 5-H), 7.21 (dd, J = 4, 2 Hz, 1 H, 6-H), 7.44–7.51 (m, 3 H, ArH), 8.08 (d, J = 8 Hz, 2 H, ArH), 11.69 (br s, 1 H, NH). 13C NMR (75 MHz, CDCl3 + DMSO-d 6): δ = 14.8, 100.6, 112.3, 125.9, 129.0, 129.1, 130.4, 138.4, 154.3, 156.8, 163.6. ESI-HRMS: m/z [M + H]+ calcd for C13H12N3S: 242.0746; found: 242.0745.
  • 11 Representative Procedure for the Preparation of 4,7-Diaryl-2-methylthio-7H-pyrrolo[2,3-d]pyrimidines 5a–g Compound 5a: To a solution of 4a (100 mg, 0.41 mmol) in anhyd dioxane (2 mL) CuI (1 mol%), K3PO4 (154 mg, 0,72 mmol), iodobenzene (71.4 mg, 0,35 mmol), and trans-cyclohexane-1,2-diamine (10 mol%) were added. The reaction mixture was refluxed for 4 h. Then every hour CuI (1.0 mol%) was added to the mixture until the total amount of CuI reached 10 mol%. The total reaction time was 13 h. Then, after cooling to r.t., EtOAc (5 mL) was added to the reaction mixture and the resulting solution was filtered through a layer of silica gel, eluting with EtOAc. The filtrate was concentrated under reduced pressure, and the residue was purified by column chromatography using CHCl3 as eluent to give 110 mg (99%) of compound 5a; mp 102–103 °C. 1H NMR (300 MHz, CDCl3): δ = 2.70 (s, 3 H, SCH3), 6.92 (d, J = 4 Hz, 1 H, 5-H), 7.40 (t, J = 8 Hz, 1 H, ArH), 7.47 (d, J = 4 Hz, 1 H, 6-H), 7.53–7.62 (m, 5 H, ArH), 7.84 (d, J = 8 Hz, 2 H, ArH), 8.18 (d, J = 8 Hz, 2 H, ArH). 13C NMR (75 MHz, CDCl3): δ = 14.8, 102.6, 113.6, 123.8, 126.9, 127.3, 129.0, 129.3, 129.6, 130.5, 137.9, 138.1, 152.7, 158.4, 165.5. ESI-HRMS: m/z [M + H]+ calcd for C19H16N3S: 318.1059; found: 318.1056.
  • 12 Representative Procedure for the Preparation of 2,4,7-Triaryl-7H-pyrrolo[2,3-d]pyrimidines 6a–h Compound 6f: To a suspension of 5c (100 mg, 0.25 mmol) and NiCl2(dppp) (5 mol%) in anhyd THF (2 mL) a solution of PhMgBr prepared from bromobenzene (0.13 mL, 1.24 mmol) and Mg (31 mg, 1.3 mmol) in anhyd THF (1 mL) was added under stirring and argon flow. For activation of magnesium 1,2-dibromoethane (0.005 mL, 0.06 mmol) was used. The reaction mixture was stirred at r.t. for 2 h. Then poured into 15% NH4Cl aq solution (15 mL) and extracted with CHCl3. The extract was dried over Na2SO4. After evaporation of CHCl3 the residue was purified by column chromatography using a mixture CHCl3–hexane (2:1) as an eluent to give 86 mg (79%) of compound 6f; mp 232–233 °C. 1H NMR (300 MHz, CDCl3): δ = 2.51 (s, 3 H, CH3), 7.06 (d, J = 4 Hz, 1 H, 5-H), 7.42–7.55 (m, 3 H, ArH), 7.60 (d, J = 4 Hz, 1 H, 6-H), 7.86 (m, 2 H, ArH), 8.42 (d, J = 8 Hz, 2 H, ArH), 7.57–7.88 (m, 9 H, ArH), 8.73 (d, J = 8 Hz, 2 H, ArH). 13C NMR (75 MHz, CDCl3): δ = 21.4, 102.2, 115.1, 124.0, 127.5, 127.7, 128.0, 128.5, 128.6, 129.1, 129.2, 129.8, 130.0, 130.2, 135.6, 136.8, 137.8, 139.1, 140.9, 143.1, 152.9, 157.4, 158.5. ESI-HRMS: m/z [M + H]+ calcd for C31H24N3: 438.1965; found: 438.1956.