Synthesis 2014; 46(17): 2376-2382
DOI: 10.1055/s-0033-1339028
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Functionalized Azobiphenyls and Azoterphenyls with Improved Solubilities for Switching Applications

Isabel Köhl
Christian-Albrechts-Universität zu Kiel, Otto-Diels-Institut für Organische Chemie, Olshausenstr. 40, 24098 Kiel, Germany   Fax: +49(431)8801558   eMail: luening@oc.uni-kiel.de
,
Ulrich Lüning*
Christian-Albrechts-Universität zu Kiel, Otto-Diels-Institut für Organische Chemie, Olshausenstr. 40, 24098 Kiel, Germany   Fax: +49(431)8801558   eMail: luening@oc.uni-kiel.de
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 09. Januar 2014

Accepted after revision: 07. April 2014

Publikationsdatum:
22. Mai 2014 (online)


Abstract

Nine new azo compounds, in particular azobiphenyls and azoterphenyls, have been synthesized and their photochemical switching has been investigated. 4,4′-Dihalogenated azobenzenes were generated by oxidative copper-mediated coupling of respective anilines followed by Suzuki–Miyaura cross-coupling reaction. The elongated azobenzenes carry functional groups at the terminal 4-positions and additional methyl substituents at the central benzene rings. While the introduction of two methyl groups improved the solubility of the resulting azo compounds considerably, the introduction of four methyl groups was less successful with respect to solubility. Differences were also found in the photochemical behavior for the dimethyl and the tetramethyl derivatives.

Supporting Information

 
  • References

  • 1 Molecular Switches . 2nd ed.; Feringa BL, Browne WR. Wiley-VCH; Weinheim: 2011
  • 2 Hartley GS. Nature 1937; 140: 281
  • 3 Kumar GS, Neckers DC. Chem. Rev. 1989; 89: 1915
  • 4 Roy D, Cambre JN, Sumerlin BS. Prog. Polym. Sci. 2010; 35: 278
  • 5 Yu Y, Nakano M, Ikeda T. Nature 2003; 425: 145
  • 6 Yamada M, Kondo M, Mamiya J, Yu Y, Kinoshita M, Barrett CJ, Ikeda T. Angew. Chem. Int. Ed. 2008; 47: 4986 ; Angew. Chem. 2008, 120, 5064
  • 7 Okuma T, Oishi Y, Ito N. Jpn. Kokai Tokkyo Koho JP 10195034 A 19980728, 1998
  • 8 Samanta S, Beharry AA, Sadovski O, McCormick TM, Babalhavaeji A, Tropepe V, Woolley GA. J. Am. Chem. Soc. 2013; 135: 9777
  • 9 Ma H, Li W, Wang J, Xiao G, Gong Y, Qi C, Feng Y, Li X, Bao Z, Cao W, Sun Q, Veaceslav C, Wang F, Lei Z. Tetrahedron 2012; 68: 8358
  • 10 Jousselme B, Blanchard P, Gallego-Planas N, Levillain E, Delaunay J, Allain M, Richomme P, Roncali J. Chem. Eur. J. 2003; 9: 5297
  • 11 Kageyama Y, Murata S. J. Org. Chem. 2005; 70: 3140
  • 12 Corbett JF, Holt PF. J. Chem. Soc. 1963; 2385
  • 13 Wimmer R, Müller N. Monatsh. Chem. 1998; 129: 1161
  • 14 Kmiecik JE. J. Org. Chem. 1965; 30: 2014
  • 15 Fischer E, Franker M, Wolovski R. J. Chem. Phys. 1955; 23: 1367
  • 16 Hartley GS. J. Chem. Soc. 1938; 633
  • 17 Nishimura N, Kosako S, Sueishi Y. Bull. Chem. Soc. Jpn. 1984; 57: 1617
  • 18 Kuroyanagi J.-I, Kanai K, Sugimoto Y, Horiuchi T, Achiwa I, Takeshita H, Kawakami K. Bioorg. Med. Chem. 2010; 18: 7593