Synthesis 2014; 46(14): 1938-1946
DOI: 10.1055/s-0033-1339128
special topic
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed Decarboxylative Trifluoromethylation of Propargyl Bromodifluoroacetates

Brett R. Ambler
a   Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045, USA
,
Santosh Peddi
b   Department of Pharmacy, Birla Institute of Technology & Science, Pilani–Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, Hyderabad, 500078 Andhra Pradesh, India   Fax: +1(785)8645326   eMail: raaltman@ku.edu
,
Ryan A. Altman*
a   Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045, USA
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 28. Februar 2014

Accepted after revision: 05. Mai 2014

Publikationsdatum:
12. Juni 2014 (online)


Abstract

The development of efficient methods for accessing fluo­rinated functional groups is desirable. Herein, we report a two-step method that utilizes catalytic copper for the decarboxylative trifluoromethylation of propargyl bromodifluoroacetates is described. This protocol affords a mixture of propargyl trifluoromethanes and trifluoromethyl allenes.

Supporting Information

 
  • References

  • 1 Theodoridis G. Fluorine-Containing Agrochemicals: An Overview of Recent Developments. In Fluorine and the Environment: Agrochemicals, Archaeology, Green Chemistry & Water. Tressaud A. Elsevier; Amsterdam: 2006
    • 2a Fluorine in Pharmaceutical and Medicinal Chemistry: From Biophysical Aspects to Clinical Applications. Gouverneur V, Müller K. Imperial College Press; London: 2012
    • 2b Fluorine in Medicinal Chemistry and Chemical Biology. Ojima I. Blackwell Publishing Ltd; West Sussex: 2009
    • 2c Bégué J.-P, Bonnet-Delpon D. Bioorganic and Medicinal Chemistry of Fluorine. John Wiley & Sons; Hoboken: 2008
    • 3a Patil Y, Ameduri B. Prog. Polym. Sci. 2013; 38: 703
    • 3b Dhara MG, Banerjee S. Prog. Polym. Sci. 2010; 35: 1022

      For recent reviews, see:
    • 4a Liang T, Neumann CN, Ritter T. Angew. Chem. Int. Ed. 2013; 52: 8214
    • 4b Liu H, Gu Z, Jiang X. Adv. Synth. Catal. 2013; 355: 617
    • 4c Liu T, Shen Q. Eur. J. Org. Chem. 2012; 6679
    • 4d Studer A. Angew. Chem. Int. Ed. 2012; 51: 8950
    • 4e Tomashenko OA, Grushin VV. Chem. Rev. 2011; 111: 4475
    • 4f Zheng Y, Ma J.-A. Adv. Synth. Catal. 2010; 352: 2745
    • 5a Morimoto H, Tsubogo T, Litvinas ND, Hartwig JF. Angew. Chem. Int. Ed. 2011; 50: 3793
    • 5b Oishi M, Kondo H, Amii H. Chem. Commun. 2009; 1909
    • 5c Dubinina GG, Furutachi H, Vicic DA. J. Am. Chem. Soc. 2008; 130: 8600
    • 6a Lishchynskyi A, Novikov MA, Martin E, Escudero-Adán EC, Novák P, Grushin VV. J. Org. Chem. 2013; 78: 11126
    • 6b Zanardi A, Novikox MA, Martin E, Benet-Buchholz J, Grushin VV. J. Am. Chem. Soc. 2011; 133: 20901
    • 7a Ambler BR, Altman RA. Org. Lett. 2013; 15: 5578
    • 7b Chen M, Buchwald SL. Angew. Chem. Int. Ed. 2013; 52: 11628
    • 7c Schareina T, Wu X.-F, Zapf A, Cotté A, Gotta M, Beller M. Top. Catal. 2012; 55: 426
    • 7d Li Y, Chen T, Wang H, Zhang R, Jin K, Wang X, Duan C. Synlett 2011; 1713
    • 7e McReynolds KA, Lewis RS, Ackerman LK. G, Dubinina GG, Brennessel WW, Vicic DA. J. Fluorine Chem. 2010; 131: 1108
    • 7f Langlois BR, Roques N. J. Fluorine Chem. 2007; 128: 1318
    • 8a Dai J.-J, Fang C, Xiao B, Yi J, Xu J, Liu Z.-J, Fu Y. J. Am. Chem. Soc. 2013; 135: 8436
    • 8b Lhu L, Liu S, Douglas JT, Altman RA. Chem. Eur. J. 2013; 19: 12800
    • 8c Xu J, Fu Y, Luo D.-F, Jiang Y.-Y, Xiao B, Liu Z.-J, Gong T.-J, Liu L. J. Am. Chem. Soc. 2011; 133: 15300
    • 8d Kawai H, Furukawa T, Nomura Y, Tokunaga E, Shibata N. Org. Lett. 2011; 13: 3596
    • 8e Zhang C.-P, Wang Z.-L, Chen Q.-Y, Zhang C.-T, Gu Y.-C, Xiao J.-C. Angew. Chem. Int. Ed. 2011; 50: 1896
  • 9 Hu M, He Z, Gao B, Li L, Ni C, Hu J. J. Am. Chem. Soc. 2013; 135: 17302
    • 10a Urata H, Fuchikami T. Tetrahedron Lett. 1991; 32: 91
    • 10b Wiemers DM, Burton DJ. J. Am. Chem. Soc. 1986; 108: 832
    • 10c Kobayashi Y, Yamamoto K, Kumadaki I. Tetrahedron Lett. 1979; 42: 4071
  • 11 Bryan MC, Dillon B, Hamann LG, Hughes GJ, Kopach ME, Peterson EA, Pourashraf M, Raheem I, Richardson P, Richter D, Sneddon HF. J. Med. Chem. 2013; 56: 6007
    • 12a Kawai H, Furukawa T, Nomura Y, Tokunaga E, Shibata N. Org. Lett. 2011; 13: 3596
    • 12b Zhao TS. N, Szabó KJ. Org. Lett. 2012; 14: 3966
    • 12c Jiang X, Qing F.-L. Beilstein J. Org. Chem. 2013; 9: 2862
  • 13 Miyake Y, Ota S.-i, Shibata M, Nakajima K, Nishibayashi Y. Chem. Commun. 2013; 49: 7809
  • 14 Duan J.-X, Chen Q.-Y. J. Chem. Soc., Perkin Trans. 1 1994; 725
    • 15a Mulder JA, Frutos RP, Patel ND, Qu B, Sun X, Tampone TG, Gao J, Sarvestani M, Eriksson MC, Haddad N, Shen S, Song JJ, Senanayake CH. Org. Process Res. Dev. 2013; 17: 940
    • 15b Chen Q.-Y, Wu S.-W. J. Chem. Soc., Chem. Commun. 1989; 705
  • 16 Collins KD, Glorius F. Nat. Chem. 2013; 5: 597
  • 17 Paraskar AS, Sudalai A. Tetrahedron 2006; 62: 5756
  • 18 Sam B, Montgomery TP, Krische MJ. Org. Lett. 2013; 15: 3790