Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2013; 24(13): 1707-1711
DOI: 10.1055/s-0033-1339283
DOI: 10.1055/s-0033-1339283
letter
Facile Oxidation of Alcohols to Aldehydes or Ketones with 1-Acetoxy-5-nitro-1,2-benziodoxole-3(1H)-one
Further Information
Publication History
Received: 26 April 2013
Accepted after revision: 21 May 2013
Publication Date:
28 June 2013 (online)
Abstract
Various benzylic alcohols and aliphatic secondary alcohols were smoothly oxidized to the corresponding aromatic aldehydes, aromatic ketones, and aliphatic ketones, respectively, with the novel 1-acetoxy-5-nitro-1,2-benziodoxole-3(1H)-one (ANBX) alone, a trivalent iodine prepared from the oxidation of 2-iodo-5-nitrobenzoic acid with MCPBA. The present reaction is the first effective method for the oxidation of alcohols with a trivalent iodine alone under mild reaction conditions.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.
- Supporting Information
-
References and Notes
- 1a Togo H, Katohgi M. Synlett 2001; 565
- 1b Zhdankin VV, Stang PJ. Chem. Rev. 2002; 102: 2523
- 1c Stang PJ. J. Org. Chem. 2003; 68: 2997
- 1d Tohma H, Kita Y. Adv. Synth. Catal. 2004; 346
- 1e Moriarty RM. J. Org. Chem. 2005; 70: 2895
- 1f Wirth T. Angew. Chem. Int. Ed. 2005; 44: 3656
- 1g Richardson RD, Wirth T. Angew. Chem. Int. Ed. 2006; 45: 4402
- 1h Ochiai M. Chem. Rev. 2007; 7: 12
- 1i Zhdankin VV, Stang PJ. Chem. Rev. 2008; 108: 5299
-
1j Merritt EA, Olofsson B. Angew. Chem. Int. Ed. 2009; 48: 9052
- 1k Ochiai M, Miyamoto K. Eur. J. Org. Chem. 2008; 4229
- 1l Dohi T, Kita Y. Chem. Commun. 2009; 2073
- 1m Uyanik M, Ishihara K. Chem. Commun. 2009; 2086
- 1n Pouységu L, Deffieux D, Quideau S. Tetrahedron 2010; 66: 2235
- 1o Zhdankin VV. J. Org. Chem. 2011; 76: 1185
- 1p Merritt EA, Olofsson B. Synthesis 2011; 517
- 1q Hypervalent Iodine Chemistry: Modern Developments in Organic Synthesis . In Topics in Current Chemistry. Vol. 224. Wirth T. Springer; Berlin: 2003
- 2a Dess DS, Martin JC. J. Org. Chem. 1983; 48: 4155
- 2b Dess DS, Martin JC. J. Am. Chem. Soc. 1991; 113: 7277
- 2c Boeckman RK. Jr, Shao P, Mullins JJ. Org. Synth., Coll. Vol. X 2004; 696
- 2d Holsworth DD. Name Reactions for Functional Group Transformations . Li JJ, Corey EJ. John Wiley & Sons; Hoboken: 2007: 218
- 3a Corey EJ, Palani A. Tetrahedron Lett. 1995; 36: 3485
- 3b Frigerio M, Santagostino M, Sputore S. J. Org. Chem. 1999; 64: 4537
- 3c Nicolaou KC, Baran PS, Zhong Y. J. Am. Chem. Soc. 2001; 123: 3183
- 4a De Mico A, Margarita R, Parlanti L, Vescovi A, Piancatelli G. J. Org. Chem. 1997; 62: 6974
- 4b Sakuratani K, Togo H. Synthesis 2003; 21
- 4c But TY. S, Tashino Y, Togo H, Toy PH. Org. Biomol. Chem. 2005; 3: 970
- 4d Piancatelli G, Leonelli F. Org. Synth. 2006; 83: 18
- 4e Vatele J. Tetrahedron Lett. 2006; 47: 715
- 4f Vugts DJ, Veum L, al-Mafraji K, Lemmens R, Schmitz RF, de Kanter FJ. J, Groen MB, Hanefeld U, Orru RV. A. Eur. J. Org. Chem. 2006; 1672
- 4g Fuwa H, Yamaguchi M, Sasaki M. Org. Lett. 2010; 12: 1848
- 4h Uchiro H, Kato R, Arai Y, Hasegawa M, Kobayakawa Y. Org. Lett. 2011; 13: 6268
- 4i Shimokawa J, Harada T, Yokoshima S, Fukuyama T. J. Am. Chem. Soc. 2011; 133: 17634
- 4j Reddy CR, Rao NN, Sujitha P, Kumar CG. Eur. J. Org. Chem. 2012; 1819
- 4k Guérin C, Bellosta V, Guillamot G, Cossy J. Eur. J. Org. Chem. 2012; 2990
- 4l Suzuki Y, Iinuma M, Moriyama K, Togo H. Synlett 2012; 23: 1250
- 5a Weixing Q, Erlei J, Weiliang B, Yongmin Z. Angew. Chem. Int. Ed. 2005; 44: 952
- 5b Weixing Q, Erlei J, Weiliang B, Yongmin Z. Tetrahedron 2006; 62: 556
- 5c Zhu C, Yoshimura A, Wei Y, Nemykin VN, Zhdankin VV. Tetrahedron 2012; 53: 1438
- 5d Yakura T, Ozuno A. Adv. Synth. Catal. 2011; 353: 855
- 6 Experimental Procedure for the Preparation of 1-Acetoxy-5-nitro-1,2-benziodoxol-3(1H)-one (ANBX): 2-Iodobenzoic acid (5.0 mmol 1.24 g) was added to a solution mixture of 1 M HNO3 (4 mL) and 1 M H2SO4 (6 mL) slowly at 0 °C. The reaction mixture was stirred for 30 min at r.t. Then, the mixture was stirred for 3 h at 130 °C. After the reaction was complete, the mixture was added to ice-water (30 mL), and the obtained mixture was filtered to afford 2-iodo-5-nitrobenzoic acid in 85% yield. To a solution of 2-iodo-5-nitrobenzoic acid (5.0 mmol 1.46 g) in AcOH (40 mL) was added MCPBA (6.0 mmol 1.59 g). The reaction mixture was stirred for 48 h at 65 °C. After the reaction was complete, the reaction mixture was added to Et2O (40 mL) at 0 °C, and the obtained mixture was filtered to afford 1-acetoxy-5-nitro-1,2-benziodoxol-3(1H)-one in 95% (1.67 g) yield. ANBX is not explosive below 200 °C. 1-Acetoxy-5-nitro-1,2-benziodoxol-3(1H)-one: mp 175–179 °C. IR (neat): 1697, 1665, 1525, 1346 cm–1. 1H NMR (500 MHz, DMF-d 7): δ = 1.96 (s, 3 H), 8.26 (d, J = 8.9 Hz, 1 H), 8.67 (d, J = 2.3 Hz, 1 H), 8.78 (dd, J = 2.3, 2.6 Hz, 1 H). 13C NMR (125 MHz, DMF-d 7): δ = 20.84, 125.52, 128.20, 128.81, 128.85, 134.31, 150.81, 166.82, 172.53. HRMS (ESI): m/z [M + H] calcd for C9H7O6NI: 351.9313; found: 351.9320.
- 7 Iinuma M, Moriyama K, Togo H. Synlett 2012; 23: 2663
- 8 Experimental Procedure for the Oxidation of Alcohols in DMF: To a solution of 4-methylbenzyl alcohol (1.0 mmol, 122.1 mg) in DMF (4 mL) was added 1-acetoxy-5-nitro-1,2-benziodoxol-3(1H)-one (2.0 mmol, 703.8 mg). The mixture was stirred for 24 h at 65 °C. After the reaction was complete, the reaction mixture was added to aq NaHCO3 (10 mL). The aqueous layer was extracted with a mixture of Et2O–hexane (1:1; 3 × 10 mL). The organic layer was dried over Na2SO4 and filtered. After removal of the solvent under reduced pressure, 4-methylbenzaldehyde was obtained with 98% purity. The purity was estimated by 1H NMR. The purified 4-methylbenzaldehyde was obtained in 97% yield by a flash short column chromatography on silica gel. On the other hand, the aqueous layer was acidified (pH ca. 2) with 1 M aq HCl (15 mL) and the obtained mixture was filtered to afford 2-iodo-5-nitrobenzoic acid in over 92% yield. ANBX could be easily obtained again by the oxidation of 2-iodo-5-nitrobenzoic acid by MCPBA in over 94% yield. 4-Methylbenzaldehyde: oil (commercial, oil). IR (neat): 2827, 2734, 1702, 809 cm–1. 1H NMR (400 MHz, CDCl3): δ = 2.44 (s, 3 H), 7.33 (d, J = 7.9 Hz, 2 H), 7.78 (d, J = 7.9 Hz, 2 H), 9.97 (s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 21.50, 129.33, 129.46, 133.81, 145.15, 191.62. 4-Chlorobenzaldehyde: mp 48–49 °C (commercial, mp 47–50 °C). IR (Nüjol): 2727, 1710 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.52 (d, J = 8.4 Hz, 2 H), 7.83 (d, J = 8.4 Hz, 2 H), 9.98 (s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 128.93, 130.36, 134.16, 140.39, 190.31. Piperoylaldehyde: mp 37–39 °C (commercial, mp 36–38 °C). IR (Nüjol): 2725, 1685 cm–1. 1H NMR (400 MHz, CDCl3): δ = 6.07 (s, 2 H), 6.93 (d, J = 7.9 Hz, 1 H), 7.32 (d, J = 1.6 Hz, 1 H), 7.41 (dd, J = 7.9, 1.6 Hz, 1 H), 9.80 (s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 102.02, 106.77, 108.24, 128.55, 131.77, 148.60, 153.00, 190.17. 4-Phenylbenzaldehyde: mp 57–58 °C (commercial, mp 58 °C). IR (Nüjol): 2726, 1708, 833 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.40 (t, J = 7.2 Hz, 1 H), 7.47 (t, J = 7.2 Hz, 2 H), 7.62 (d, J = 7.2 Hz, 2 H), 7.73 (d, J = 8.2 Hz, 2 H), 7.93 (d, J = 8.2 Hz, 2 H), 10.04 (s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 126.94, 127.26, 128.06, 128.60, 129.85, 134.77, 139.26, 146.74, 191.49. 4-(Allyloxy)benzaldehyde: oil. IR (neat): 1686, 1596, 1251, 1157, 829 cm–1. 1H NMR (400 MHz, CDCl3): δ = 4.62 (d, J = 5.2 Hz, 2 H), 5.33 (dd, J = 10.6, 1.4 Hz, 1 H), 5.44 (dd, J = 17.4, 1.4 Hz, 1 H), 6.01–6.10 (m, 1 H), 7.01 (d, J = 8.8 Hz, 2 H), 7.83 (d, J = 8.6 Hz, 2 H), 9.88 (s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 68.90, 114.89, 118.27, 129.91, 131.87, 132.18, 163.49, 190.71.> 2-Thiophenecarboxaldehyde: oil (commercial, oil). IR (neat): 2820, 2761, 1671 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.22 (dd, J = 4.8, 3.8 Hz, 1 H), 7.75–7.82 (m, 2 H), 9.95 (s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 128.22, 135.03, 136.21, 143.94, 182.89. Nicotinaldehyde: oil. IR (neat): 1699, 1588, 700 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.50–7.54 (m, 1 H), 8.20 (d, J = 8.8 Hz, 1 H), 8.87 (d, J = 8.6 Hz, 1 H), 9.10 (s, 1 H), 10.14 (s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 123.45, 131.02, 135.49, 151.55, 154.27, 190.49. Benzo[b]thiophen-2-carbaldehyde: oil. IR (neat): 1665, 1515, 1133, 747, 725, 657 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.38 (t, J = 7.6 Hz, 1 H), 7.44 (t, J = 7.6 Hz, 1 H), 7.81 (d, J = 8.2 Hz, 1 H), 7.86 (d, J = 7.7 Hz, 1 H), 7.92 (s, 1 H), 10.03 (s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 122.92, 124.96, 126.01, 127.89, 134.36, 138.21, 142.23, 142.93, 184.44. Propiophenone: oil (commercial, oil). IR (neat): 1686 cm–1. 1H NMR (400 MHz, CDCl3): δ = 1.23 (t, J = 7.3 Hz, 3 H), 3.00 (q, J = 7.3 Hz, 2 H), 7.45 (t, J = 7.7 Hz, 2 H), 7.55 (t, J = 7.7 Hz, 1 H), 7.96 (d, J = 7.7 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 7.72, 31.25, 127.44, 128.02, 132.35, 136.39, 200.28. 1-Phenylnonan-1-one: oil. IR (neat): 2924, 1685, 689 cm–1. 1H NMR (400 MHz, CDCl3): δ = 0.88 (t, J = 6.0 Hz, 3 H), 1.23–1.38 (m, 10 H), 1.69–1.77 (m, 2 H), 2.92 (t, J = 7.3 Hz, 2 H), 7.41 (t, J = 6.7 Hz, 2 H), 7.50 (t, J = 6.7 Hz, 1 H), 7.94 (d, J = 8.3 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 13.86, 22.44, 24.24, 28.97, 29.15, 29.26, 31.62, 38.28, 127.75, 128.24, 132.53, 136.80, 199.92. Benzophenone: mp 49–52 °C (commercial, mp 49 °C). IR (Nüjol): 1657 cm–1. 1H NMR (400 MHz CDCl3): δ = 7.48 (t, J = 7.5 Hz, 4 H), 7.58 (t, J = 7.5 Hz, 2 H), 7.80 (d, J = 7.5 Hz, 4 H). 13C NMR (100 MHz, CDCl3): δ = 128.20, 129.98, 132.35, 137.51, 196.70. trans-Cinnamaldehyde: oil (commercial, oil). IR (neat): 2816, 2743, 1676 cm–1. 1H NMR (400 MHz, CDCl3): δ = 6.72 (dd, J = 7.7, 16.1 Hz, 1 H), 7.41–7.46 (m, 3 H), 7.48 (d, J = 16.1 Hz, 1 H), 7.54–7.60 (m, 2 H), 9.71 (d, J = 7.7 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 128.31, 128.42, 128.93, 131.09, 133.81, 152.60, 193.52. 1-Adamantanecarboxaldehyde: mp 140–142 °C. IR (Nüjol): 2815, 2698, 1722 cm–1. 1H NMR (400 MHz, CDCl3): δ = 1.68–1.80 (m, 12 H), 2.03–2.09 (m, 3 H), 9.32 (s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 27.31, 35.80, 36.52, 44.82, 206.09. Camphor: mp 170–173 °C (commercial, mp 172–180 °C). IR (Nüjol): 1749 cm–1. 1H NMR (400 MHz, CDCl3): δ = 0.84 (s, 3 H), 0.91 (s, 3 H), 0.96 (s, 3 H), 1.30–1.45 (m, 2 H), 1.68 (td, J = 12.5, 4.0 Hz, 1 H), 1.84 (d, J = 18.4 Hz, 1 H), 1.90–2.00 (m, 1 H), 2.09 (t, J = 4.0 Hz, 1 H), 2.35 (dt, J = 18.4, 4.0 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 9.08, 18.98, 19.61, 26.89, 29.75, 42.89, 43.14, 46.62, 57.53, 219.53. Cyclododecanone: mp 60–62 °C (commercial, mp 61 °C). IR (neat): 2928, 1702, 1470 cm–1. 1H NMR (500 MHz, CDCl3): δ = 1.24–1.34 (m, 14 H), 1.68–1.74 (m, 4 H), 2.46 (t, J = 6.2 Hz, 4 H). 13C NMR (100 MHz, CDCl3): δ = 21.99, 22.21, 23.87, 24.25, 24.40, 40.01, 212.46. 5α-Cholestan-3-one: mp 123–125 °C (commercial, mp 128–129 °C). IR (Nüjol): 1719 cm–1. 1H NMR (400 MHz, CDCl3): δ = 0.68 (s, 3 H), 0.69–0.76 (m, 1 H), 0.84–0.92 (m, 9 H), 1.01 (s, 3 H), 0.94–1.18 (m, 9 H), 1.23–1.44 (m, 9 H), 1.46–1.60 (m, 4 H), 1.66–1.74 (m, 1 H), 1.78–1.89 (m, 1 H), 1.96–2.12 (m, 3 H), 2.21–2.44 (m, 3 H). 13C NMR (100 MHz, CDCl3): δ = 11.43, 12.04, 18.64, 21.42, 22.53, 22.79, 23.79, 24.19, 27.98, 28.21, 28.95, 31.69, 35.36, 35.61, 35.76, 36.11, 38.17, 38.54, 39.47, 39.88, 42.56, 44.70, 46.68, 53.78, 56.23, 212.12. 2,3,4,6-Tetra-O-benzy-d-glucono-1,5-lactone: oil. IR (neat): 2919, 2869, 1755, 1454, 1165, 1094, 738, 698 cm–1. 1H NMR (400 MHz, CDCl3): δ = 3.64–3.75 (m, 2 H), 3.88–3.98 (m, 2 H), 4.12 (d, J = 6.1 Hz, 1 H), 4.43–4.76 (m, 8 H), 4.98 (d, J = 11.3 Hz, 1 H), 7.15–7.41 (m, 20 H). 13C NMR (100 MHz, CDCl3): δ = 68.21, 73.52, 73.69 (2 × C), 73.91, 76.01, 78.12, 80.92, 127.79 (3 × C), 127.91, 127.96 (3 × C), 128.08, 128.37, 128.41 (2 × C), 128.45, 136.90, 137.46 (2 × C), 137.55, 169.31. HRMS (ESI): m/z [M + H] calcd for C34H35O6: 539.2428; found: 539.2423.
For recent reviews, see: