Synlett 2013; 24(14): 1781-1784
DOI: 10.1055/s-0033-1339306
letter
© Georg Thieme Verlag Stuttgart · New York

Sequential Oxidation–Prins Reaction Processes Induced by the Same Iron Salt: Direct Access to 2-Aryl-4-Chloro-Tetrahydropyrans from Benzyl ­Alcohols

Fabienne Fache*
Université de Lyon, Université Lyon 1, Institut de Chimie et de Biochimie Moléculaire et Supramoléculaire (ICBMS), UMR 5246 CNRS, ­Bat Raulin, 43, Bd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France   Fax: +33(4)72448136   Email: piva@univ-lyon1.fr
,
Mickaël Muselli
Université de Lyon, Université Lyon 1, Institut de Chimie et de Biochimie Moléculaire et Supramoléculaire (ICBMS), UMR 5246 CNRS, ­Bat Raulin, 43, Bd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France   Fax: +33(4)72448136   Email: piva@univ-lyon1.fr
,
Olivier Piva*
Université de Lyon, Université Lyon 1, Institut de Chimie et de Biochimie Moléculaire et Supramoléculaire (ICBMS), UMR 5246 CNRS, ­Bat Raulin, 43, Bd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France   Fax: +33(4)72448136   Email: piva@univ-lyon1.fr
› Author Affiliations
Further Information

Publication History

Received: 03 May 2013

Accepted after revision: 03 June 2013

Publication Date:
18 July 2013 (online)


Abstract

A clay-supported iron(III) nitrate (Clayfen) was used as a stoichiometric reagent to first oxidize benzylic alcohols. The aldehydes thus obtained were converted in situ into tetrahydropyrans by way of a Prins cyclization induced by iron species already present in the media.

Supporting Information

 
  • References and Notes

    • 1a Tietze LF, Brasche G, Gericke KM In Domino Reactions in Organic Synthesis . Wiley-VCH; Weinheim: 2006
    • 1b Pelissier H. Chem. Rev. 2013; 113: 442
  • 2 Taylor RJ. K, Reid M, Foot J, Raw SA. Acc. Chem. Res. 2005; 38: 851
  • 3 Lena JI. C, Fernandez EM. S, Ramani A, Birlirakis N, Barrero AF, Arseniyadis S. Eur. J. Org. Chem. 2005; 683
  • 4 Moody CL, Pugh DS, Taylor RJ. K. Tetrahedron Lett. 2011; 52: 2511
    • 5a Reid M, Rowe DJ, Taylor RJ. K. Chem. Commun. 2003; 2284
    • 5b MacCoss RN, Balskus EP, Ley SV. Tetrahedron Lett. 2003; 44: 7779
  • 6 Oswald MF, Raw SA, Taylor RJ. K. Chem. Commun. 2005; 2253
    • 7a Kadota S, Tezuka Y, Prasaim JK, Ali MS, Banskota AH. Curr. Top. Med. Chem. 2003; 3: 203
    • 7b Claeson P, Claeson UP, Tuchinda P, Rentrakul V. Studies in Natural Product Chemistry . Vol. 26. Atta-ur Rahman. Elsevier; Amsterdam: 2002: 881
  • 8 Yin J, Kouda K, Tezuka Y, Le Tran Q, Miyahara T, Chen Y, Kadota S. Planta Med. 2004; 70: 54
  • 9 Hiebel MA, Pelotier B, Piva O. Tetrahedron 2007; 63: 7874
  • 10 Yao H, Ren J, Tong R. Chem. Commun. 2013; 49: 193
    • 11a Araujo CA. C, Alegrio LV, Leon LL. Phytochemistry 1998; 49: 751
    • 11b Lee C-HA, Loh T.-P. Tetrahedron Lett. 2006; 47: 1641
    • 11c Rogano F, Rüedi P. Helv. Chim. Acta 2010; 93: 1281
    • 12a Tezuka Y, Ali MS, Banskota AH, Kadota S. Tetrahedron Lett. 2000; 41: 5903
    • 12b Ko HM, Lee DG, Kim MA, Kim HJ, Park J, Lah MS, Lee E. Tetrahedron 2007; 63: 5797
    • 12c Bunt AJ, Bailey CD, Cons BD, Edwards SJ, Elsworth JD, Pheko T, Willis CL. Angew. Chem. Int. Ed. 2012; 51: 3901
  • 13 Nising FC, Bräse S. Chem. Soc. Rev. 2012; 41: 988
    • 14a Bhattacharjee A, Soltani O, De Brabander JK. Org. Lett. 2002; 4: 481
    • 14b Fuwa H, Noto K, Sasaki M. Org. Lett. 2010; 12: 1636
    • 14c Wang L, Li P, Menche D. Angew. Chem. Int. Ed. 2010; 49: 9270
    • 14d Asano K, Matsubara S. J. Am. Chem. Soc. 2011; 133: 16711
    • 14e Cochet T, Roche D, Bellosta V, Cossy J. Eur. J. Org. Chem. 2012; 801
    • 14f Krishna PR, Nomula R, Ramana DV. Tetrahedron Lett. 2012; 53: 3612
    • 15a Olier C, Kaafarani M, Gastaldi S, Bertrand MP. Tetrahedron 2010; 66: 413
    • 15b Pastor IM, Yus M. Curr. Org. Chem. 2012; 16: 1277
    • 15c Han X, Peh G.-R, Floreancig PE. Eur. J. Org. Chem. 2013; 1193
    • 16a Mahmood A, Suarez JR, Thomas SP, Aggarwal VK. Tetrahedron Lett. 2013; 54: 49
    • 16b Raffier L, Izquierdo F, Piva O. Synthesis 2011; 4037
    • 16c Saikia AK, Bondalapati S, Indukuri K, Gogoi P. Chem. Lett. 2011; 40: 1176
    • 17a Miranda PO, Diaz DD, Padron JI, Bermejo J, Martin VS. Org. Lett. 2003; 5: 1979
    • 17b Miranda PO, Carballo RM, Martin VS, Padron JI. Org. Lett. 2009; 11: 357
    • 17c Zheng K, Liu X, Qin S, Xie M, Lin L, Hu C, Feng X. J. Am. Chem. Soc. 2012; 134: 17564
  • 18 Clarisse D, Pelotier B, Piva O, Fache F. Chem. Commun. 2012; 48: 157
  • 19 Clarisse D, Pelotier B, Fache F. Chem. Eur. J. 2013; 19: 857
  • 20 Haines AH. Method of Oxidation of Organic Compounds . Academic Press; London: 1988
    • 21a Indukuri K, Bondalapati S, Kotipalli T, Gogoi P, Saikia AK. Synlett 2012; 233
    • 21b Reddy BV. S, Chaya DN, Yadav JS, Chatterjee D, Kunwar AC. Tetrahedron Lett. 2011; 52: 2961
    • 21c Chio FK, Warne J, Gough D, Penny M, Green S, Coles SJ, Hursthouse MB, Jones P, Hassall L, McGuire TM, Dobbs AP. Tetrahedron 2011; 67: 5107
    • 21d Reddy BV. S, Venkateswarlu A, Kumar CG. K. S. N, Vinu A. Tetrahedron Lett. 2010; 51: 6511
    • 21e Yadav JS, Rajasekhar K, Murty MS. R. Tetrahedron Lett. 2005; 46: 2311
    • 22a Knölker HJ. J. Prakt Chem. 1995; 337: 75
    • 22b Reid M, Rowe DJ, Taylor RJ. K. Chem. Commun. 2003; 2284
  • 23 Zhang W, Cue Jr. BW In Green Techniques for Organic Synthesis and Medicinal Chemistry. Wiley; Chichester: 2012
    • 24a Bolm C, Legros J, Le Paih J, Zani L. Chem. Rev. 2004; 104: 6217
    • 24b Plietker B In Iron Catalysis in Organic Chemistry . Plietker B. Wiley-VCH; Weinheim: 2008
    • 24c Sun C.-L, Li B.-J, Shi Z.-J. Chem. Rev. 2010; 110: 1293
    • 24d Bézier D, Sortais J.-B, Darcel C. Adv. Synth. Catal. 2013; 355: 19
  • 26 As mentioned in ref. 25a, a gentle heating was required to induce the oxidation step in a reasonable time.
  • 27 Whereas these procedures worked out very safely in our hands, nitrates are potentially hazardous compounds, and appropriate caution has to be applied for both steps. In particular, we urge to avoid confined conditions, and we recommend that appropriate safety tests be carried out before scale-up.
  • 29 Typical ProcedureFor stability reasons, the catalyst was prepared just before use: Fe(NO3)3·9H2O (112.5 mg, 0.27 mmol) was diluted in acetone (2 mL), and the resulting mixture was stirred for 5 min. Then, bentonite K10 (150 mg) was added, and the mixture was stirred for additional 5 min. After careful concentration until dryness, under vacuum at 50 °C (and strictly not at higher temperature), the resulting powder was immediately implicated in the oxidation procedure. Benzyl alcohol (0.5 mmol) in CH2Cl2 (1.5 mL) was added to the just prepared catalyst, and the resulting heterogeneous mixture was stirred at 35 °C until complete conversion (around 4 h, TLC monitoring). After cooling to r.t., homoallylic alcohol 3 (0.5 mmol) and trimethylsilylchloride (80 μL, 0.6 mmol) were added at once, and the reaction mixture was stirred for two additional hours at r.t. The crude mixture was then directly chromatographied to deliver the expected tetrahydropyran. All data were in agreement with the literature.
  • 30 Alder RW, Harvey JN, Oakley MT. J. Am. Chem. Soc. 2002; 124: 4960
  • 31 Carballo RM. Ramirez M. A, Rodriguez ML, Martin VS, Padron JI. Org. Lett. 2006; 8: 3837