Synlett 2013; 24(14): 1795-1800
DOI: 10.1055/s-0033-1339466
letter
© Georg Thieme Verlag Stuttgart · New York

One-Pot Regioselective Synthesis of Imidazole and 2,3-Dihydroquinazolinone Derivatives – An Easy Access to ‘Nature-Like Molecules’; Part XIII in the Series: ‘Studies on Novel Synthetic Methodologies’

Koneni V. Sashidhara*
a   Medicinal and Process Chemistry Division, Central Drug Research Institute, CSIR-CDRI, Lucknow, 226 001, India   Fax: +91(522)2623405   Email: sashidhar123@gmail.com   Email: kv_sashidhara@cdri.res.in
,
Gopala Reddy Palnati
a   Medicinal and Process Chemistry Division, Central Drug Research Institute, CSIR-CDRI, Lucknow, 226 001, India   Fax: +91(522)2623405   Email: sashidhar123@gmail.com   Email: kv_sashidhara@cdri.res.in
,
Ranga Prasad Dodda
a   Medicinal and Process Chemistry Division, Central Drug Research Institute, CSIR-CDRI, Lucknow, 226 001, India   Fax: +91(522)2623405   Email: sashidhar123@gmail.com   Email: kv_sashidhara@cdri.res.in
,
Srinivasa Rao Avula
a   Medicinal and Process Chemistry Division, Central Drug Research Institute, CSIR-CDRI, Lucknow, 226 001, India   Fax: +91(522)2623405   Email: sashidhar123@gmail.com   Email: kv_sashidhara@cdri.res.in
,
Priyanka Swami
b   Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli 229 010, India
› Author Affiliations
Further Information

Publication History

Received: 15 April 2013

Accepted after revision: 21 June 2013

Publication Date:
01 August 2013 (online)


Abstract

A mild and highly practical regioselective synthesis of imidazole and 2,3-dihydroquinazolinone derivatives from 5-alkyl-4-hydroxyisophthalaldehydes with suitable substrates in acetic acid is reported. Further exploration of the molecular diversity of 2,3-dihydroquinazolinone is demonstrated by the synthesis of diverse pharmacologically relevant natural-product-like scaffolds.

Supporting Information

 
  • References and Notes

    • 1a Grimmett MR In Comprehensive Heterocyclic Chemistry II . Katritzky AR, Ress CW, Schriven EF. Pergamon Press; Oxford: 1996
    • 1b Tsukamoto S, Kato H, Hirota H, Fusetani N. J. Nat. Prod. 1996; 108: 2288
    • 1c Hassan W, Edrada R, Ebel R, Wray V, Berg A, Van Soest R, Wiryowidagdo S, Proksch P. J. Nat. Prod. 2004; 67: 817
    • 1d Kobayashi Y, Nakano Y, Kizaki M, Hoshikuma K, Yokoo Y, Kamiya T. Planta Med. 2001; 67: 628
    • 1e Christina F, Foy JM, Pratt CN. F. W, Purvis JR. J. Pharm. Pharmacol. 1981; 33: 219
    • 1f Atwell GA, Fan JY, Tan K, Denny WA. J. Med. Chem. 1998; 41: 4744
    • 1g Lopez SE, Rosales ME, Urdaneta N, Gody MV, Charris JE. J. Chem. Res. 2000; 6: 258
    • 1h Hamel E, Lin CM, Plowman J, Wang H, Lee K, Paull KD. Biochem. Pharmacol. 1996; 51: 53
    • 2a Michael JP. Nat. Prod. Rep. 2004; 21: 650
    • 2b Mhaske SB, Argade NP. Tetrahedron 2006; 62: 9787
    • 3a Zhu YP, Fei Z, Liu MC, Jia FC, Wu AX. Org. Lett. 2013; 15: 378
    • 3b Wood KW, Bergnes G. Annu. Rep. Med. Chem. 2004; 39: 173
    • 3c Bergnes G, Brejc K, Belmont L. Curr. Top. Med. Chem. 2005; 5: 127
    • 4a Morteza S. Chem. Rev. 2012; 112: 3508
    • 4b Gu Y. Green Chem. 2012; 14: 2091
    • 4c Balme G, Bossharth E, Monteiro N. Eur. J. Org. Chem. 2003; 4101
    • 4d Brase S, Gil C, Knepper K. Bioorg. Med. Chem. 2002; 10: 2415
    • 4e Dömling A, Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
    • 4f Qian W, Amegadzie A, Winterheimer D, Allen J. Org. Lett. 2013; 15: 2986
    • 5a Ohno H, Ohta Y, Oishi S, Fujii N. Angew. Chem. Int. Ed. 2007; 46: 2295
    • 5b Bonne D, Dekhane M, Zhu J. Angew. Chem. Int. Ed. 2007; 46: 2485
    • 5c Pinto A, Neuville L, Zhu J. Angew. Chem. Int. Ed. 2007; 46: 3291
    • 5d Komagawa S, Saito S. Angew. Chem. Int. Ed. 2006; 45: 2446
    • 5e Yoshida H, Fukushima H, Ohshita J, Kunai A. J. Am. Chem. Soc. 2006; 128: 11040
    • 5f Pache S, Lautens M. Org. Lett. 2003; 5: 4827
    • 5g Duan XH, Liu XY, Guo LN, Liao MC, Liu WM, Liang YM. J. Org. Chem. 2005; 70: 6980
    • 6a Porco JA. Jr. Beilstein J. Org. Chem. 2012; 8: 827
    • 6b Schreiber SL. Nature 2009; 457: 153
    • 6c O’Connor CJ, Beckmannw HS. G, Spring DR. Chem. Soc. Rev. 2012; 41: 4444
    • 6d Burke MD, Schreiber SL. Angew. Chem. Int. Ed. 2004; 43: 46
    • 6e Spandl RJ, Bender A, Spring DR. Org. Biomol. Chem. 2008; 6: 1149
    • 7a Kantevari S, Patpi SR, Addla D, Putapatri SR, Sridhar B, Yogeeswari P, Sriram D. ACS Comb. Sci. 2011; 13: 427
    • 7b Markina NA, Mancuso R, Neuenswander B, Lushington GH, Larock RC. ACS Comb. Sci. 2011; 13: 265
    • 7c Zhu MY, Lim BJ, Koh M, Park SB. ACS Comb. Sci. 2012; 14: 124
    • 7d Wang ZY, Wang B, Wu J. J. Comb. Chem. 2007; 9: 811
    • 8a Multicomponent Reactions . Zhu J, Bienayme H. Wiley-VCH; Weinheim: 2005
    • 8b Dömling A, Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
    • 8c Simon C, Constantieux T, Rodriguez J. Eur. J. Org. Chem. 2004; 4957
    • 8d Sadek KU, Mekheimer RA, Mohamed TM, Moustafa MS, Elnagdi MH. Beilstein J. Org. Chem. 2012; 8: 18
    • 8e Laschat S, Becheanu A, Bell T, Baro A. Synlett 2005; 2547
    • 8f Nowrouzi F, Batey RA. Angew. Chem. Int. Ed. 2013; 52: 892
    • 9a Sha F, Wu L, Huang X. J. Org. Chem. 2012; 77: 3754
    • 9b Jiang B, Li QY, Tu SJ, Li G. Org. Lett. 2012; 14: 5210
  • 10 Ruijter E, Scheffelaar R, Orru RV. A. Angew. Chem. Int. Ed. 2011; 50: 6234
    • 11a Hao WJ, Xu XP, Bai HW, Wang SY, Ji SJ. Org. Lett. 2012; 14: 4894
    • 11b Sparks RB, Combs AP. Org. Lett. 2004; 6: 2473
    • 11c Martorana A, Pace A, Buscemi S, Piccionello AP. Org. Lett. 2012; 14: 3240
    • 11d Kaim LE, Grimaud L, Vieu E. Org. Lett. 2007; 9: 4171
    • 11e Wang C, Han ZY, Luo HW, Gong LZ. Org. Lett. 2010; 12: 2266
    • 12a Sashidhara KV, Palnati GR, Dodda RP, Avula SR, Swami P. Synlett 2013; 24: 105
    • 12b Sashidhara KV, Palnati GR, Avula SR, Kumar A. Synlett 2012; 23: 611
    • 12c Sashidhara KV, Avula SR, Singh LR, Palnati GR. Tetrahedron Lett. 2012; 53: 4880
    • 12d Sashidhara KV, Kumar A, Dodda RP, Kumar B. Tetrahedron Lett. 2012; 53: 3281
    • 12e Sashidhara KV, Kumar M, Kumar A. Tetrahedron Lett. 2012; 53: 2355
    • 12f Sashidhara KV, Kumar A, Agarwal S, Kumar M, Kumar M, Sridhar B. Adv. Synth. Catal. 2012; 354: 1129
    • 12g Sashidhara KV, Kumar A, Rao KB. Tetrahedron Lett. 2011; 52: 5659
    • 12h Sashidhara KV, Kumar A, Chatterjee M, Rao KB, Singh S, Verma AK, Palit G. Bioorg. Med. Chem. Lett. 2011; 21: 1937
  • 13 Ganem B. Acc. Chem. Res. 2009; 42: 463
  • 14 Sashidhara KV, Rosaiah JN. Tetrahedron Lett. 2007; 48: 3285
  • 15 Typical Method for the Preparation of Compound 4b via MCR A mixture of 5-ethyl-4-hydroxyisophthalaldehyde (1b, 1.0 mmol), NH4OAc (2, 1.5 mmol), and 4,4′-dimethoxybenzil (3, 1.0 mmol) in AcOH (5 mL) was heated at 110 °C with stirring for 4.0 h (progress of the reaction was monitored by TLC). After completion of the reaction, the reaction mixture was diluted with H2O (25 mL), followed by extraction with CHCl3 (2 × 25 mL). The combined extracts were dried over Na2SO4 and dried under high vacuum to afford the crude product. It was subjected to further purification by column chromatography (silica 100–200) using 20% EtOAc–hexane as eluent. The desired product 4b was obtained as a yellow solid; yield 85%; mp 135–137 °C. IR (KBr): 3527, 3010, 2964, 1660, 1239, 1032 cm–1. 1H NMR (300 MHz, DMSO-d 6): δ = 12.51 (s, 1 H), 11.09 (s, 1 H), 10.12 (s, 1 H), 8.30 (d, J = 2.1 Hz, 1 H), 8.18 (d, J = 2.0 Hz, 1 H), 7.45 (d, J = 8.6 Hz, 4 H), 7.00–6.89 (m, 4 H), 3.78 (s, 3 H), 3.77 (s, 3 H), 2.70 (q, J = 7.4 Hz, 2 H), 1.23 (t, J = 7.4 Hz, 3 H). 13C NMR (75 MHz, DMSO-d 6): δ = 197.7, 159.0, 144.9, 133.4, 133.2, 129.8, 128.2, 123.6, 121.7, 115.0, 114.7, 56.0, 22.8, 14.6. ESI-MS: m/z = 429 [M + H]+.
  • 16 Sashidhara KV, Kumar A, Kumar M, Sarkar J, Sinha S. Bioorg. Med. Chem. Lett. 2010; 20: 7205
    • 17a Hosseini-Zare MS, Mahdavi M, Saeedi M, Asadi M, Javanshir S, Shafiee A, Foroumadi A. Tetrahedron Lett. 2012; 53: 3448
    • 17b Kumar KS, Kumar PM, Rao VS, Jafar AA, Meda CL. T, Kapavarapu R, Parsa KV. L, Pal M. Org. Biomol. Chem. 2012; 10: 3098
    • 17c Siddiqui SA, Narkhede UC, Palimkar SS, Daniel T, Lahoti RJ, Srinivasa KV. Tetrahedron 2005; 61: 3539
  • 18 General Procedure for the Preparation of 9c via MCR A mixture of 4-hydroxy-5-propylisophthalaldehyde (1c, 1.0 mmol), methylamine (7, 1.5 mmol), and isatoicanhydride (8, 1.0 mmol) in AcOH (5.0 mL) was stirred in a round-bottom flask for 2.0 h at 110 °C (initially effervescence was observed due to the generation of CO2 gas). Upon completion of the reaction, the reaction mixture was diluted with H2O (25 mL), followed by extraction with CHCl3 (2 × 25 mL). The combined organic phases were dried over anhyd Na2SO4 and concentrated in vacuo. The crude product was purified by column chromatography on silica gel (100–200) in 40% CH2Cl2–hexane solvent system. The required compound was obtained as a white solid; yield 78%; mp 173–175 °C. IR (KBr): 3516, 3412, 3015, 2934, 1650, 1190, 1042 cm–1. 1H NMR (300 MHz, CDCl3): δ = 11.39 (s, 1 H), 9.84 (s, 1 H), 7.96 (d, J = 7.7 Hz, 1 H), 7.48 (s, 1 H), 7.42 (s, 1 H), 7.31–7.28 (m, 1 H), 6.90–6.85 (m, 1 H), 6.59 (d, J = 7.8 Hz, 1 H), 5.72 (s, 1 H), 4.59 (s, 1 H), 2.88 (s, 3 H), 2.64 (t, J = 7.4 Hz, 2 H), 1.66–1.59 (m, 2 H), 0.94 (t, J = 7.2 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 196.5, 163.8, 160.7, 145.4, 135.3, 133.7, 132.7, 130.6, 129.6, 128.5, 119.8, 115.6, 114.3, 73.5, 31.8, 31.2, 22.4, 13.9. ESI-MS: m/z = 325 [M + H]+.
    • 19a Siva Kumar K, Mahesh Kumar P, Anil Kumar K, Sreenivasulu M, Ahamed AJ, Rambabu D, Rama Krishna G, Malla Reddy C, Ravikumar K, Shivakumar K, Krishna Priya K, Kishore VL. P, Pal M. Chem. Commun. 2011; 47: 5010
    • 19b Panja SK, Dwivedi N, Saha S. Tetrahedron Lett. 2012; 53: 6167
  • 20 Boehm TL, Showalter HD. H. J. Org. Chem. 1996; 61: 6498
  • 21 Sashidhara KV, Kumar M, Modukuri RK, Srivastava RK, Soni A, Srivastava K, Singh SV, Saxena JK, Gauniyal HM, Puri SK. Bioorg. Med. Chem. 2012; 20: 2971