RSS-Feed abonnieren
DOI: 10.1055/s-0033-1339483
Catalyst Development in the Context of Ring Expansion–Addition of Carbon Dioxide to Epoxides to Give Organic Carbonates
Publikationsverlauf
Received: 10. Juni 2013
Accepted after revision: 02. Juli 2013
Publikationsdatum:
07. August 2013 (online)
Dedicated to Prof. Javier de Mendoza for his contributions to chemical science
Abstract
In the last decade, chemists have increasingly focused on the development of new and more efficient methods for the catalytic conversion of carbon dioxide into value-added organic molecules. Homogeneous catalysis has proved to be a key technology for the conversion of carbon dioxide under particularly mild reaction conditions that meet the increasing societal demands for sustainable chemical processing. In this account article, we focus on the most effective routes developed for ring expansion–addition reaction of carbon dioxide to epoxides mediated by either metal catalysts or organocatalyst systems to give cyclic organic carbonates.
1 Introduction
2 Metal-Mediated Synthesis of Cyclic Organic Carbonates
3 Organocatalyzed Formation of Cyclic Organic Carbonates
4 Mechanistic Considerations
5 Concluding Remarks
-
References
- 1a Martin R, Kleij AW. ChemSusChem 2011; 4: 1259
- 1b Bruckmeier C, Rieger B, Herrmann WA, Kühn FE. Angew. Chem. Int. Ed. 2011; 50: 8510
- 1c Carbon Dioxide as Chemical Feedstock . Aresta M. Wiley-VCH; Weinheim: 2010
- 1d Lu X.-B, Ren W.-M, Wu G.-P. Acc. Chem. Res. 2012; 45: 1721
- 2a Gomes CD. N, Jacquet O, Villiers C, Thuéry P, Ephritikhine M, Cantat T. Angew. Chem. Int. Ed. 2012; 51: 187
- 2b Langer R, Diskin-Posner Y, Leitus G, Shimon LJ. W, Ben-David Y, Milstein D. Angew. Chem. Int. Ed. 2011; 50: 9948
- 3a Yoshida M, Fujita M, Ishii T, Ihara M. J. Am. Chem. Soc. 2003; 125: 4874
- 3b Jeske RC, Rowley JM, Coates GW. Angew. Chem. Int. Ed. 2008; 47: 6041
- 3c Darensbourg DJ, Wilson SJ. J. Am. Chem. Soc. 2011; 133: 18610
- 3d Takimoto M, Mori M. J. Am. Chem. Soc. 2004; 126: 5956
- 3e Li S, Yuan W, Ma S. Angew. Chem. Int. Ed. 2011; 50: 2578
- 4a Decortes A, Castilla AM, Kleij AW. Angew. Chem. Int. Ed. 2010; 49: 9822
- 4b Pescarmona PP, Taherimehr M. Catal. Sci. Technol. 2012; 2: 2169
- 4c North M, Pasquale R, Young C. Green Chem. 2010; 12: 1514
- 5 The term ‘cycloaddition’ that is generally used for this transformation is, in our view, incorrect as ‘cycloaddition’ officially refers to a pericyclic chemical conversion between one or more unsaturated molecules. This combination should then give a cyclic product with a net reduction in bond multiplicity. We feel that a better description of the addition of CO2 to epoxides would be ‘ring expansion–addition’.
- 6 Ema, Sakai, and co-workers recently communicated a bifunctional porphyrin-based metal catalyst that shows very high turnover frequencies and turnover numbers, see: Ema T, Miyazaki Y, Koyama S, Yano Y, Sakai T. Chem. Commun. (Cambridge) 2012; 48: 4489
- 7a Clegg W, Harrington RW, North M, Pasquale R. Chem. Eur. J. 2010; 16: 6828
- 7b Decortes A, Kleij AW. ChemCatChem 2011; 3: 831
- 8 The increased use of computational methods in this and related areas of CO2 catalysis is a recent trend, see: Drees M, Cokoja M, Kühn FE. ChemCatChem 2012; 4: 1703
- 9a Darensbourg DJ, Moncada AI, Choi W, Reibenspies JH. J. Am. Chem. Soc. 2008; 130: 6523
- 9b Darensbourg DJ, Moncada AI. Macromolecules 2010; 43: 5996
- 10a Salassa G, Coenen MJ. J, Wezenberg SJ, Hendriksen BL. M, Speller S, Elemans JA. A. W, Kleij AW. J. Am. Chem. Soc. 2012; 134: 7186
- 10b Wezenberg SJ, Salassa G, Escudero-Adán EC, Benet-Buchholz J, Kleij AW. Angew. Chem. Int. Ed. 2011; 50: 713
- 11 Decortes A, Martínez Belmonte M, Benet-Buchholz J, Kleij AW. Chem. Commun. (Cambridge) 2010; 46: 4580
- 12 Kleij AW, Tooke DM, Kuil M, Lutz M, Spek AL, Reek JN. H. Chem. Eur. J. 2005; 11: 4743
- 13 Taherimehr M, Decortes A, Al-Amsyar S.-M, Lueangchaichaweng W, Whiteoak CJ, Kleij AW, Pescarmona PP. Catal. Sci. Technol. 2012; 2: 2231
- 14 Escárcega-Bobadilla MV, Salassa G, Martínez Belmonte M, Escudero-Adán EC, Kleij AW. Chem. Eur. J. 2012; 18: 6805
- 15 Wezenberg SJ, Escudero-Adán EC, Benet-Buchholz J, Kleij AW. Chem. Eur. J. 2009; 15: 5695
- 16 Escárcega-Bobadilla MV, Martínez Belmonte M, Martin E, Escudero-Adán EC, Kleij AW. Chem. Eur. J. 2013; 19: 2641
- 17 Licini G, Mba M, Zonta C. Dalton Trans. 2009; 5265
- 18 Whiteoak CJ, Gjoka B, Martin E, Martínez Belmonte M, Escudero-Adán EC, Zonta C, Licini G, Kleij AW. Inorg. Chem. 2012; 51: 10639
- 19 Whiteoak CJ, Martin E, Martínez Belmonte M, Benet-Buchholz J, Kleij AW. Adv. Synth. Catal. 2012; 354: 469
- 20a Li C.-Y, Wu C.-R, Liu Y.-C, Ko B.-T. Chem. Commun. (Cambridge) 2012; 48: 9628
- 20b See ref. 9 for oxetane conversion.
- 21 Whiteoak CJ, Martin E, Escudero-Adán EC, Kleij AW. Adv. Synth. Catal. 2013; 355 DOI: 10.1002/adsc.201201070
- 22a Wu G.-P, Wei S.-H, Ren W.-M, Lu X.-B, Xu T.-Q, Darensbourg DJ. J. Am. Chem. Soc. 2011; 133: 15191
- 22b Wu G.-P, Wei S.-H, Lu X.-B, Ren W.-M, Darensbourg DJ. Macromolecules 2010; 43: 9202
- 23 Raders SM, Verkade JG. J. Org. Chem. 2009; 74: 5417
- 24 Whiteoak CJ, Kielland N, Laserna V, Escudero-Adán EC, Martin E, Kleij AW. J. Am. Chem. Soc. 2013; 135: 1228
- 25 Chatelet B, Joucla L, Dutasta J.-P, Martinez A, Szeto KC, Dufaud V. J. Am. Chem. Soc. 2013; 135: 5348
- 26a Kawanami H, Sasaki A, Matsuia K, Ikushima Y. Chem. Commun. (Cambridge) 2003; 896
- 26b Yang Z.-Z, He L.-N, Miao C.-X, Chanfreau S. Adv. Synth. Catal. 2010; 352: 2233
- 26c Yang Z.-Z, Zhao Y.-N, He L.-N, Gao J, Yin Z.-S. Green Chem. 2012; 14: 519
- 26d Zhang Y, Yin S, Luo S, Au CT. Ind. Eng. Chem. Res. 2012; 51: 3951
- 26e Aprile C, Giacalone F, Agrigento P, Liotta LF, Martens JA, Pescarmona PP, Gruttadauria M. ChemSusChem 2011; 4: 1830
- 26f Sun J, Wang J, Cheng W, Zhang J, Li X, Zhang S, She Y. Green Chem. 2012; 14: 654
- 26g Foltran S, Alsarraf J, Robert F, Landais Y, Cloutet E, Cramail H, Tassaing T. Catal. Sci. Technol. 2013; 3: 1046
- 26h Tharun J, Mathai G, Roshan R, Kathalikkattil AC, Bomi K, Park D.-W. Phys. Chem. Chem. Phys. 2013; 15: 9029
-
27 Zhou H, Zhang W.-Z, Liu C.-H, Qu J.-P, Lu X.-B. J. Org. Chem. 2008; 73: 8039
- 28 He L.-N, Yasuda H, Sakakura T. Green Chem. 2003; 5: 92
- 29 Sit WN, Ng SM, Kwong KY, Lau CP. J. Org. Chem. 2005; 70: 8583
- 30 Tsutsumi Y, Yamakawa K, Yoshida M, Ema T, Sakai T. Org. Lett. 2010; 12: 5728
- 31 Qi C, Ye J, Zeng W, Ziang H. Adv. Synth. Catal. 2010; 352: 1925
- 32 Shen Y.-M, Duan W.-L, Shi M. Adv. Synth. Catal. 2003; 345: 337
- 33 Spencer JN, Heckman RA, Harner RS, Shoop SL, Robertson KS. J. Phys. Chem. 1973; 77: 3103
- 34 Whiteoak CJ, Nova A, Maseras F, Kleij AW. ChemSusChem 2012; 5: 2032
- 35a North M, Pasquale R. Angew. Chem. Int. Ed. 2009; 48: 2946
- 35b Wang J.-Q, Dong K, Cheng W.-G, Sun J, Zhang SJ. Catal. Sci. Technol. 2012; 2: 1480
- 35c Ma J, Liu J, Zhang Z, Han B. Green Chem. 2012; 14: 2410
- 35d Jutz F, Andanson JM, Baiker A. Chem. Rev. 2011; 111: 322
- 36 Castro-Gómez F, Salassa G, Kleij AW, Bo C. Chem. Eur. J. 2013; 19: 6289
For selected reviews/books on this topic, see:
For some recent examples, see:
For examples of carbon dioxide addition chemistry, see:
For recent reviews, see:
There are only a few reports of effective conversions of epoxides and CO2 into cyclic carbonates under ambient conditions; see for example:
For selected contributions, see:
For some selected examples, see:
For some other example, see:
For some examples, see:
For relevant mechanistic work related to cyclic carbonate synthesis, see: