Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2013; 24(14): 1785-1790
DOI: 10.1055/s-0033-1339487
DOI: 10.1055/s-0033-1339487
letter
Enantioenriched Isoindolinones from Chiral Phase-Transfer-Catalyzed Intramolecular Aza-Michael Reactions
Further Information
Publication History
Received: 22 May 2013
Accepted after revision: 01 July 2013
Publication Date:
01 August 2013 (online)
Abstract
Optically active isoindolinones are synthesized by asymmetric intramolecular aza-Michael reactions using cinchoninium phase-transfer organocatalysts. The resulting compounds are useful intermediates for the synthesis and development of benzodiazepine-receptor agonists.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.
- Supporting Information
-
References
- 1a Wrobel J, Dietrich A, Woolson SA, Millen J, McCaleb M, Harrison MC, Hohman TC, Sredy J, Sullivan D. J. Med. Chem. 1992; 35: 4613
- 1b Pigeon P, Decroix B. Tetrahedron Lett. 1996; 37: 7707
- 1c Couture A, Deniau E, Grandclaudon P. Tetrahedron 1997; 53: 10313
- 1d Couture A, Deniau E, Grandclaudon P, Hoarau C. J. Org. Chem. 1998; 63: 3128
- 1e Belliotti TR, Brink WA, Kesten SR, Rubin JR, Wustrow DJ, Zoski KT, Whetzel SZ, Corbin AE, Pugsley TA, Heffner TG, Wise LD. Bioorg. Med. Chem. Lett. 1998; 8: 1499
- 1f Couture A, Deniau E, Grandclaudon P, Hoarau C. Tetrahedron 2000; 56: 1491
- 1g Riedinger C, Endicott JA, Kemp SJ, Smyth LA, Watson A, Valeur E, Golding BT, Griffin RJ, Hardcastle IR, Noble ME, McDonnel JM. J. Am. Chem. Soc. 2008; 130: 16038
- 2a Uemura S, Fujita T, Sakaguchi Y, Kumamoto E. Biochem. Biophys. Res. Commun. 2012; 418: 695
- 2b Nishiyama T, Chiba S, Yamada Y. Eur. J. Pharmacol. 2008; 596: 56
- 2c Kanamitsu N, Osaki T, Itsuji Y, Yoshimura M, Tsujimoto H, Soga M. Chem. Pharm. Bull. 2007; 55: 1682
- 3a Hussein Z, Mulford DJ, Bopp BA, Granneman GR. Br. J. Clin. Pharmacol. 1993; 36: 357; Chem. Abstr. 1994, 120, 23014t
- 3b Kondo T, Yoshida K, Yamamoto M, Tanayama S. Arzneim. Forsch. 1996; 46: 11 ; Chem. Abstr. 1995, 124, 306386
- 4a Zhou B, Hou W, Yang Y, Li Y. Chem. Eur. J. 2013; 19: 4701
- 4b Zhu C, Falck JR. Tetrahedron 2012; 68: 9192
- 4c Petronzi C, Collarile S, Croce G, Filosa R, De Caprariis P, Peduto A, Palombi L, Intintoli V, Di Mola A, Massa A. Eur. J. Org. Chem. 2012; 5357
- 4d Zhu C, Falck JR. Org. Lett. 2011; 13: 1214
- 4e Connolly S, Kristoffersson A, Skrinjar M. PCT Int. Appl WO 2008099165, 2008 ; Chem. Abstr. 2008, 149, 288691.
- 4f Dudash J, Rybczynski P, Urbanski M, Xiang A, Zeck R, Zhang X, Zhang Y. U.S. Pat. Appl US 20070099930, 2007 ; Chem. Abstr. 2007, 146, 481914.
- 4g Kanamitsu N, Osaki T, Itsuji Y, Yoshimura M, Tsujimoto H, Soga M. Chem. Pharm. Bull. 2007; 55: 1682
- 4h Grigg R, Gai X, Khamnaen T, Rajviroongit S, Sridharan V, Zhang L, Collard S, Keep A. Can. J. Chem. 2005; 83: 990
- 4i Gai X, Grigg R, Khamnaen T, Rajviroongit S, Sridharan V, Zhang L, Collard S, Keep A. Tetrahedron Lett. 2003; 44: 7441
- 4j Nageshwar Rao I, Prabhakaran EN, Das SK, Iqbal J. J. Org. Chem. 2003; 68: 4079
- 4k Bollbuck B, Eder J, Heng R, Revesz L, Schlapbach A, Waelchli R. PCT Int. Appl WO 2004037796 A2, 2004 ; Chem. Abstr. 2004, 140, 391295.
- 4l Love CJ, Leenaerts JE, Cooymans LP, Lebsack AD, Branstetter BJ, Rech JC, Gleason EA, Venable JD, Wiener D, Smith DM, Breitenbucher JG. PCT Int. Appl WO 2009132000, 2009 ; Chem. Abstr. 2009, 151, 508492.
- 5 Nishimura M, Sugawara N, Nigorikawa Y, Inomiya N, Ueda K, Ishii A, Kanemitsu N. Jpn. Pat JP 2010241770, 2010 ; Chem. Abstr. 2010, 153, 580344.
- 6a Xu L.-W, Xia C.-G. Eur. J. Org. Chem. 2005; 633
- 6b Vicario JL, Badía D, Carrillo L, Etxebarria J, Reyes E, Ruiz N. Org. Prep. Proced. Int. 2005; 37: 513
- 6c Krishna PR, Sreeshailam A, Srinivas R. Tetrahedron 2009; 65: 9657
- 6d Enders D, Wang C, Liebich JX. Chem. Eur. J. 2009; 15: 11058
- 6e Rulev AY. Russian Chem. Rev. 2011; 80: 197
- 6f Wang J, Li P, Choy PY, Chan AS. C, Kwong FY. ChemCatChem 2012; 4: 917
- 7a Shirakawa S, Maruoka K. Angew. Chem. Int. Ed. 2013; 52: 4312
- 7b Jew SS, Park HG. Chem. Commun. 2009; 7090
- 7c Hashimoto T, Maruoka K. Chem. Rev. 2007; 107: 5656
- 7d Ooi T, Maruoka K. Aldrichimica Acta 2007; 40: 77
- 7e Shirakawa S, Maruoka K In Science of Synthesis, Asymmetric Organocatalysis . Vol. 2. List B, Maruoka K. Thieme; Stuttgart: 2012: 551
- 7f Park H.-G In Science of Synthesis, Asymmetric Organocatalysis . Vol. 2. List B, Maruoka K. Thieme; Stuttgart: 2012: 499
- 8a Aires-de-Sousa J, Lobo AM, Prabhakar S. Tetrahedron Lett. 1996; 37: 3183
- 8b Aires-de-Sousa J, Prabhakar S, Lobo AM, Rosa AM, Gomes MJ. S, Corvo MC, Williams DJ, White AJ. P. Tetrahedron: Asymmetry 2001; 12: 3349
- 8c Fioravanti R, Mascia MG, Pellacani L, Tardella PA. Tetrahedron 2004; 60: 8073
- 8d Murugan E, Siva A. Synthesis 2005; 2022
- 8e Minakata S, Murakami Y, Tsuruoka R, Kitanaka S, Komatsu M. Chem. Commun. 2008; 6363
- 8f Bandini M, Eichholzer A, Tragni M, Umani-Ronchi A. Angew. Chem. Int. Ed. 2008; 47: 3238
- 8g Tomooka K, Uehara K, Nishikawa R, Suzuki M, Igawa K. J. Am. Chem. Soc. 2010; 132: 9232
- 8h Mahé O, Dez I, Levacher V, Brière J.-F. Angew. Chem. Int. Ed. 2010; 49: 7072
- 8i Bandini M, Bottoni A, Eichholzer A, Miscione GP, Stenta M. Chem. Eur. J. 2010; 16: 12462
- 8j Hu J, Liu L, Wang X, Hu Y, Yang S, Liang Y. Green Sustainable Chem. 2011; 1: 165
- 8k Wang L, Shirakawa S, Maruoka K. Angew. Chem. Int. Ed. 2011; 50: 5327
- 8l Mahé O, Dez I, Levacher V, Brière J.-F. Org. Biomol. Chem. 2012; 10: 3946
- 9a Jung ME In Comprehensive Organic Synthesis . Vol. 4. Trost BM, Fleming I, Semmelhack MF. Pergamon Press; Oxford: 1991: 30 ; and references therein
- 9b De K, Legros L, Crousse B, Bonnet-Delpon D. J. Org. Chem. 2009; 74: 6260
- 9c Wang J, Li P.-F, Chan SH, Chan AS. C, Kwong FY. Tetrahedron Lett. 2012; 53: 2887
- 9d Amara Z, Drège E, Troufflard C, Retailleau P, Joseph D. Org. Biomol. Chem. 2012; 10: 7148
- 9e Medina F, Michon C, Agbossou-Niedercorn F. Eur. J. Org. Chem. 2012; 6218
- 9f Medina F, Duhal N, Michon C, Agbossou-Niedercorn F. C. R. Chim. 2013; 16: 311
- 10a Jew SS, Jeong BS, Yoo MS, Huh H, Park HG. Chem. Commun. 2001; 1244
- 10b Park HG, Jeong BS, Yoo MS, Park MK, Huh H, Jew SS. Tetrahedron Lett. 2001; 42, 4645
- 10c Park HG, Jeong BS, Yoo MS, Lee JH, Park MK, Lee YJ, Kim MJ, Jew SS. Angew. Chem. Int. Ed. 2002; 41: 3036
- 10d Jew SS, Yoo MS, Jeong BS, Park IY, Park HG. Org. Lett. 2002; 4: 4245
- 10e Kim S, Lee J, Lee T, Park HG, Kim D. Org. Lett. 2003; 5: 2703
- 10f Danner P, Bauer M, Phukan P, Maier ME. Eur. J. Org. Chem. 2005; 317
- 10g Lee JH, Jeong BS, Ku JM, Jew SS, Park HG. J. Org. Chem. 2006; 71: 6690
- 10h Lee JH, Yoo MS, Jung JH, Jew SS, Park HG, Jeong BS. Tetrahedron 2007; 63: 7906
- 10i Andrus MB, Christiansen MA, Hicken EJ, Gainer MJ, Bedke DK, Harper KC, Mikkelson SR, Dodson DS, Harris DT. Org. Lett. 2007; 9: 4865
- 10j Christiansen MA, Butler AW, Hill AR, Andrus MB. Synlett 2009; 653
- 10k Ku J.-M, Jeong BS, Jew SS, Park HG. J. Org. Chem. 2007; 72: 8115
- 10l Li M, Zhou P, Roth HF. Synthesis 2007; 55
- 11 General Procedure: Benzamide 4a (0.078 mmol), base (1.3 equiv) and catalyst (10 mol%) were stirred for 20 h at r.t. in toluene (1 mL). The resulting reaction was monitored by TLC until completion. The crude product was purified by flash chromatography on silica gel (EtOAc–hexane, 40:60) to afford, after evaporation of solvents, product 3a as a white solid. The enantiomeric excess of 3a was determined by HPLC analysis (Daicel Chiralpak AD CSP; hexane–EtOH (7:3); 20 °C; 0.5 mL/min; 275 nm). Compound 3a: Mp 185 °C; Rf = 0.40 (EtOAc–hexane, 40:60); [α]D 20 +76 (c 0.43, CHCl3, for 76% ee). IR: 1689, 1627, 1446, 1388, 1149, 758, 698 cm–1. 1H NMR (300 MHz, CDCl3): δ = 1.74–1.83 (m, 4 H, 2 × CH2), 2.40 (dd, J = 15.6, 8.8 Hz, 1 H, CH2CO), 2.85 (dd, J = 15.6, 4.3 Hz, 1 H, CH2CO), 3.07–3.19 (m, 2 H, NCH2), 3.34–3.55 (m, 2 H, NCH2), 5.88 (dd, J = 8.8, 4.3 Hz, 1 H, NCH), 7.23 (t, J = 7.3 Hz, 1 H, Ar-H), 7.42–7.63 (m, 4 H, Ar-H), 7.63–7.68 (m, 3 H, Ar-H), 7.92 (d, J = 7.1 Hz, 1 H, Ar-H). 13C NMR (75 MHz, CDCl3): δ = 168.1 (CO), 166.9 (CO), 145.3 (C), 136.7 (C), 132.3 (CH), 131.7 (C), 129.1 (2 × CH), 128.7 (CH), 125.5 (CH), 124.1 (CH), 123.3 (2 × CH), 123.2 (CH), 57.8 (CH), 46.6 (CH2), 45.8 (CH2), 38.5 (CH2), 25.9 (CH2), 24.3 (CH2). Anal. Calcd for C20H20N2O2: C, 74.98; H, 6.29; N, 8.74. Found: C, 75.20; H, 6.41; N, 8.64. Compound 4a: Obtained from 6a (2 mmol). Yield: 429 mg (67%); mp 194 °C; Rf = 0.62 (EtOAc). IR: 2970, 1672, 1647, 1585, 1442, 1327, 754, 690 cm–1. 1H NMR (300 MHz, CDCl3): δ = 1.78–1.94 (m, 4 H, 2 × CH2), 3.36–3.42 (m, 4 H, 2 × NCH2), 6.53 (d, J = 15.6 Hz, 1 H, =CH), 7.11 (t, J = 7.4 Hz, 1 H, Ar-H), 7.28–7.43 (m, 5 H, Ar-H), 7.53 (d, J = 6.9 Hz, 1 H, Ar-H), 7.65–7.71 (m, 2 H, Ar-H), 7.76 (d, J = 15.6 Hz, 1 H, CH=), 8.67 (br s, 1 H, NH). 13C NMR (75 MHz, CDCl3): δ = 167.6 (CO), 164.4 (CO), 138.8 (CH), 138.3 (C), 137.1 (C), 133.2 (C), 129.9 (CH), 129.0 (2 × CH), 128.0 (CH), 124.5 (CH), 122.1 (2 × CH), 120.1 (CH), 46.6 (CH2), 46.0 (CH2), 26.0 (CH2), 24.1 (CH2). Anal. Calcd for C20H20N2O2: C, 74.98; H, 6.29; N, 8.74. Found: C, 75.05; H, 6.20; N, 8.83.