Synthesis 2013; 45(19): 2737-2744
DOI: 10.1055/s-0033-1339496
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of C-Glucosyl Aminooxy Esters

Sandrine Peyrat
PPSM, ENS Cachan, Institut d’Alembert, CNRS, UMR 8531, 61 av. Président Wilson, 94235 Cachan cedex, France   Fax: +33(147)402454   Email: joanne.xie@ens-cachan.fr
,
Keguang Cheng
PPSM, ENS Cachan, Institut d’Alembert, CNRS, UMR 8531, 61 av. Président Wilson, 94235 Cachan cedex, France   Fax: +33(147)402454   Email: joanne.xie@ens-cachan.fr
,
Juan Xie*
PPSM, ENS Cachan, Institut d’Alembert, CNRS, UMR 8531, 61 av. Président Wilson, 94235 Cachan cedex, France   Fax: +33(147)402454   Email: joanne.xie@ens-cachan.fr
› Author Affiliations
Further Information

Publication History

Received: 24 May 2013

Accepted after revision: 11 July 2013

Publication Date:
26 July 2013 (online)


Abstract

Glycosyl amino acids are constituents of glycopeptides and glycoproteins playing key roles in biological processes. We have synthesized C-glucosyl aminooxy acid derivatives as novel glycosyl amino acid building blocks for the generation of glycopeptide and glycoprotein mimics. These compounds can be readily prepared from C-allyl glucosides, through dihydroxylation, selective tritylation, Mitsunobu reaction with PhthNOH, detritylation, and oxidation. Both C-glucosyl l- and d-α-aminooxy esters have been successfully synthesized. With the ready availability of C-allyl glycosides, the present methodology could be applied to the synthesis of other C-glycosyl aminooxy acid derivatives.

 
  • References

  • 1 Kreisman LS. C, Cobb BA. Glycobiology 2012; 22: 1019
  • 2 Muthana SM, Campbell CT, Gildersleeve JC. ACS Chem. Biol. 2012; 7: 31
  • 3 Murrey HE, Hsieh-Wilson LC. Chem. Rev. 2008; 108: 1708
  • 4 Davis BG. J. Chem. Soc., Perkin Trans. 1 1999; 3215
  • 5 Bertozzi CR, Kiessling LL. Science (Washington, D.C.) 2001; 291: 2357
  • 6 Wu C.-Y, Wong C.-H. Chem. Commun. 2011; 47: 6201
  • 7 Seitz O. ChemBioChem 2000; 1: 214
  • 8 Gamblin DP, Scanlan EM, Davis BD. Chem. Rev. 2009; 109: 131
  • 9 Dondoni A, Marra A. Chem. Rev. 2000; 100: 4395
  • 10 Yang D, Zhang Y, Zhu NY. J. Am. Chem. Soc. 2002; 124: 9966
  • 11 Chen F, Song KS, Wu YD, Yang D. J. Am. Chem. Soc. 2008; 130: 743
  • 12 Li X, Wu Y.-D, Yang D. Acc. Chem. Res. 2008; 41: 1428
  • 13 Zhang YH, Song K, Zhu NY, Yang D. Chem. Eur. J. 2010; 16: 577
  • 14 Lee M.-r, Lee J, Shin I. Synlett 2002; 1463
  • 15 Lee M.-r, Lee J, Baek B.-h, Shin I. Synlett 2003; 325
  • 16 Katritzky AR, Avan I, Tala SR. J. Org. Chem. 2009; 74: 8690
  • 17 Draghici B, Hansen FK, Buciumas A.-M, El-Gendy BE.-D. M, Todadze E, Katritzky AR. RSC Adv. 2011; 1: 602
  • 18 Shin I, Lee J. Synlett 2000; 1297
  • 19 Malapelle A, Ramozzi R, Xie J. Synthesis 2009; 888
  • 20 Gong YC, Sun HB, Xie J. Eur. J. Org. Chem. 2009; 6027
  • 21 Gong Y, Peyrat S, Sun H, Xie J. Tetrahedron 2011; 67: 7114
  • 22 Song Z, He X.-P, Chen G.-R, Xie J. Synthesis 2011; 2761
  • 23 Peyrat S, Xie J. Synthesis 2012; 44: 1718
  • 24 Noel O, Xie J. Synthesis 2013; 45: 134
  • 25 Rodriguez EC, Winans KA, King DS, Bertozzi CR. J. Am. Chem. Soc. 1997; 119: 9905
  • 26 Clavé G, Boutal H, Hoang A, Perraut F, Volland H, Renard PY, Romieu A. Org. Biomol. Chem. 2008; 6: 3065
  • 27 Tejler J, Salameh B, Leffler H, Nilsson UJ. Org. Biomol. Chem. 2009; 7: 3982
  • 28 Hudak JE, Yu HH, Bertozzi CR. J. Am. Chem. Soc. 2011; 133: 16127
  • 29 Lewis MD, Cha JK, Kishi Y. J. Am. Chem. Soc. 1982; 104: 4976
  • 30 Xie J. Eur. J. Org. Chem. 2002; 3411
  • 31 Hung SC, Lin CC, Wong CH. Tetrahedron Lett. 1997; 38: 5419
  • 32 Gurjar MK, Mainkar AS, Syamala M. Tetrahedron: Asymmetry 1993; 4: 2343
  • 33 Goekjian PG, Wu TC, Kang HY, Kishi Y. J. Org. Chem. 1991; 56: 6412