Synlett 2013; 24(16): 2148-2152
DOI: 10.1055/s-0033-1339640
letter
© Georg Thieme Verlag Stuttgart · New York

Cationic Iron(III) Porphyrin Catalyzed Dehydrative Friedel–Crafts Reaction of Alcohols with Arenes

Satoru Teranishi
a   Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan   Fax: +81(75)3832438   Email: kurahashi.takuya.2c@kyoto-u.ac.jp   Email: matsubara.seijiro.2e@kyoto-u.ac.jp
,
Takuya Kurahashi*
a   Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan   Fax: +81(75)3832438   Email: kurahashi.takuya.2c@kyoto-u.ac.jp   Email: matsubara.seijiro.2e@kyoto-u.ac.jp
b   JST, ACT-C, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
,
Seijiro Matsubara*
a   Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan   Fax: +81(75)3832438   Email: kurahashi.takuya.2c@kyoto-u.ac.jp   Email: matsubara.seijiro.2e@kyoto-u.ac.jp
b   JST, ACT-C, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
› Author Affiliations
Further Information

Publication History

Received: 04 July 2013

Accepted after revision: 18 July 2013

Publication Date:
28 August 2013 (online)


Abstract

Alcohols react with arenes in the presence of cationic iron(III) porphyrin catalyst. The reaction involves the formation of the C–C bond via dehydration, which is formal Lewis acid catalyzed Friedel–Crafts reaction.

Supporting Information

 
  • References and Notes


    • For some recent reviews on Friedel–Crafts reaction, see:
    • 1a Olah GA In Friedel–Crafts and Related Reactions . Wiley; New York: 1963
    • 1b Olah GA In Friedel–Crafts Chemistry . Wiley; New York: 1973
    • 1c Bandini M, Melloni A, Umani Ronchi A. Angew. Chem. Int. Ed. 2004; 43: 550
    • 1d Jørgensen KA. Synthesis 2003; 1117
    • 1e Bandini M, Tragni M. Org. Biomol. Chem. 2009; 7: 1501
    • 1f Rueping M, Nachtsheim BJ. Beilstein J. Org. Chem. 2010; 6: 1
    • 1g Kumar R, Van der Eycken EV. Chem. Soc. Rev. 2013; 42: 1121
  • 2 Yamauchi T, Hattori K, Mizutaki S, Tamaki K, Uemura S. Bull. Chem. Soc. Jpn. 1986; 59: 3617
    • 3a Tsuchimoto T, Tobita K, Hiyama T, Fukuzawa S.-i. Synlett 1996; 557
    • 3b Tsuchimoto T, Tobita K, Hiyama T, Fukuzawa S.-i. J. Org. Chem. 1997; 62: 6997
    • 3c Shimizu I, Khien KM, Nagatomo M, Nakajima T, Yamamoto A. Chem. Lett. 1997; 26: 851
    • 3d Sarca VD, Laali KK. Green Chem. 2006; 8: 615
    • 3e Tsuchimoto T, Hiyama T, Fukuzawa S.-i. Chem. Commun. 1996; 2345
    • 3f Shiina I, Suzuki M. Tetrahedron Lett. 2002; 43: 6391
    • 3g Noji M, Ohno T, Fuji K, Futaba N, Tajima H, Ishii K. J. Org. Chem. 2003; 68: 9340
    • 3h Sun H.-B, Li B, Chen S, Li J, Hua R. Tetrahedron 2007; 63: 10185
    • 3i Sun G, Sun H, Wang Z, Zhou M.-M. Synlett 2008; 1096
    • 3j Yadav JS, Bhunia DC, Krishna KV, Srihari P. Tetrahedron Lett. 2007; 48: 8306
    • 3k Choudhury J, Podder S, Roy S. J. Am. Chem. Soc. 2005; 127: 6162
    • 3l Podder S, Choudhury J, Roy S. J. Org. Chem. 2007; 72: 3129
    • 3m Motokura K, Nakagiri N, Mizugaki T, Ebitani K, Kaneda K. J. Org. Chem. 2007; 72: 6006
    • 3n Yamamoto Y, Itonaga K. Chem. Eur. J. 2008; 14: 10705
    • 3o Le Bras J, Muzart J. Tetrahedron 2007; 63: 7942
    • 3p Sanz R, Martínez A, Miguel D, Álvarez-Gutiérrez JM, Rodríguez F. Adv. Synth. Catal. 2006; 348: 1841
    • 3q Sanz R, Miguel D, Álvarez-Gutiérrez JM, Rodríguez F. Synlett 2008; 975
    • 3r Liu Y.-L, Liu L, Wang Y.-L, Han Y.-C, Wang D, Chen Y.-J. Green Chem. 2008; 10: 635
    • 3s Srihari P, Bhunia DC, Sreedhar P, Yadav JS. Synlett 2008; 1045
    • 3t Sun G, Wang Z. Tetrahedron Lett. 2008; 49: 4929
    • 3u Mertins K, Iovel I, Kischel J, Zapf A, Beller M. Adv. Synth. Catal. 2006; 348: 691
    • 3v Mertins K, Iovel I, Kischel J, Zapf A, Beller M. Angew. Chem. Int. Ed. 2005; 44: 238
    • 4a Iovel I, Mertins K, Kischel J, Zapf A, Beller M. Angew. Chem. Int. Ed. 2005; 44: 3913
    • 4b Wang B.-Q, Xiang S.-K, Sun Z.-P, Guan B.-T, Hu P, Zhao K.-Q, Shi Z.-J. Tetrahedron Lett. 2008; 49: 4310
    • 5a Fujiwara K, Kurahashi T, Matsubara S. J. Am. Chem. Soc. 2012; 134: 5512
    • 5b Wakabayashi R, Kurahashi T, Matsubara S. Org. Lett. 2012; 14: 4794
    • 5c Ozawa T, Kurahashi T, Matsubara S. Org. Lett. 2012; 14: 3008
    • 5d Terada T, Kurahashi T, Matsubara S. Heterocycles 2012; 85: 2415

      For examples of the use of metalloporphyrins in nonoxidative bond formation, see:
    • 6a Suda K, Baba K, Nakajima S.-I, Takanami T. Chem. Commun. 2002; 2570
    • 6b Suda K, Kikkawa T, Nakajima S.-I, Takanami T. J. Am. Chem. Soc. 2004; 126: 9554
    • 6c Suda K, Baba K, Nakajima S.-I, Takanami T. Tetrahedron Lett. 1999; 40: 7243
    • 6d Chen J, Che C.-M. Angew. Chem. Int. Ed. 2004; 43: 4950
    • 6e Li Y, Chan PW. H, Zhu N.-Y, Che C.-M, Kwong H.-L. Organometallics 2004; 23: 54
    • 6f Schmidt JA. R, Lobkovsky EB, Coates GW. J. Am. Chem. Soc. 2005; 127: 11426
    • 6g Zhou C.-Y, Chan PW. H, Che C.-M. Org. Lett. 2006; 8: 325
  • 7 General Procedure for the Dehydrative Friedel–Crafts Reaction of Alcohols with Arenes To a screw-cap vial was added [Fe(TPP)][SbF6] (0.02 mmol, 18 mg), followed by the alcohol (0.4 mmol), the arene (2 mmol), and dry 1,2-DCE (1.0 mL) in a dry box. The vial was sealed and stirred at 80 °C for 5 h. The reaction mixture was diluted with hexane–EtOAc (10:1), passed through a short silica gel pad and washed with hexane–EtOAc (1:1), concentrated in vacuo. The crude product was purified by flash column chromatography using SiO2 (hexane–EtOAc). Selected Data for Compound 3aa Yield: 72%; colorless oil. TLC: Rf  = 0.62 (hexane–toluene, 2:1). 1H NMR (500 MHz, CDCl3): δ = 7.36 (d, J = 7.5 Hz, 2 H), 7.31–7.28 (m, 2 H), 7.22–7.16 (m, 3 H), 6.88–6.86 (m, 1 H), 6.44 (d, J = 16.0 Hz, 1 H), 6.38–6.32 (m, 1 H), 3.81 (s, 3 H), 3.50 (d, J = 6.5 Hz, 3 H). 13C NMR (125 MHz, CDCl3): δ = 158.1, 137.5, 132.2, 130.7, 129.7, 129.6, 128.5, 127.0, 126.1, 113.9, 55.3, 38.4. IR (neat): 3025, 1511, 1246, 1175, 1035, 966, 827, 729, 692 cm–1. MS: m/z (%) = 224/25 (100/17) [M+]. HRMS (APCI): m/z [M + H]+ calcd for C16H16O: 225.1274; found: 225.1269.