Synthesis 2013; 45(21): 3038-3043
DOI: 10.1055/s-0033-1339682
paper
© Georg Thieme Verlag Stuttgart · New York

Anti-Friedel–Crafts-Type Substitution To Form Biaryl Linkages

Gergely Gulyas-Fekete
a   Leibniz Institute of Plant Biochemistry, Department of Bioorganic Chemistry, Weinberg 3, 06120 Halle, Germany   Fax: +49(345)55821309   eMail: bernhard.westermann@ipb-halle.de
b   University of Pécs, Medical School, Department of Biochemistry and Medical Chemistry, Szigeti út 12, 7624 Pécs, Hungary
,
Carlos J. Boluda
a   Leibniz Institute of Plant Biochemistry, Department of Bioorganic Chemistry, Weinberg 3, 06120 Halle, Germany   Fax: +49(345)55821309   eMail: bernhard.westermann@ipb-halle.de
,
Bernhard Westermann*
a   Leibniz Institute of Plant Biochemistry, Department of Bioorganic Chemistry, Weinberg 3, 06120 Halle, Germany   Fax: +49(345)55821309   eMail: bernhard.westermann@ipb-halle.de
c   Institute of Organic Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle, Germany   eMail: wessjohann@ipb-halle.de
,
Ludger A. Wessjohann*
a   Leibniz Institute of Plant Biochemistry, Department of Bioorganic Chemistry, Weinberg 3, 06120 Halle, Germany   Fax: +49(345)55821309   eMail: bernhard.westermann@ipb-halle.de
c   Institute of Organic Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle, Germany   eMail: wessjohann@ipb-halle.de
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 19. Juni 2013

Accepted after revision: 08. August 2013

Publikationsdatum:
02. September 2013 (online)


Abstract

The ipso-substitution of one (or two) hydroxy groups of phloroglucinol with arene nucleophiles (e.g., o-xylene, tetralin, biphenyl) can be achieved easily under Friedel–Crafts-type conditions with or without the use of organic solvents affording a variety of 3,5-dihydroxybiphenyls (57–89% yields). The new method has significant practical advantages compared to classical biaryl-­coupling routes.

Supporting Information

 
  • References

    • 1a Pizzirani D, Roberti M, Cavalli A, Grimaudo S, DiCristina A, Pipitone RM, Gebbia N, Tolomeo M, Recanatini M. ChemMedChem 2008; 3: 345
    • 1b Heitman LH, Narlawar R, de Vries H, Willemsen MN, Wolfram D, Brussee J, Ijzerman AP. J. Med. Chem. 2009; 52: 2036
    • 1c Pizzirani D, Roberti M, Grimaudo S, DiCristina A, Pipitone RM, Tolomeo M, Recanatini M. J. Med. Chem. 2009; 52: 6936
    • 1d Singh IP, Sidana J, Bharatea SB, Foley WJ. Nat. Prod. Rep. 2010; 27: 393
    • 2a Dendrimers and Other Dendritic Polymers . Fréchet JM, Tomalia DA. John Wiley & Sons; New York: 1999
    • 2b Newkome GR, Moorefield CN, Vögtle F. Dendrimers and Dendrons: Concepts, Synthesis, Applications . Wiley-VCH; Weinheim: 2001
    • 2c Marcos M, Martin Rapun R, Omenat A, Serrano JL. Chem. Soc. Rev. 2007; 36: 1889
    • 2d Grayson SM, Fréchet JM. Chem. Rev. 2001; 101: 3819
    • 2e Zhang A. Prog. Chem. (Beijing, China) 2005; 17: 157
  • 3 Cammidge AN, King AS. H. Tetrahedron Lett. 2006; 47: 5569
    • 4a Kotnis AS. Tetrahedron Lett. 1991; 32: 3441
    • 4b Erdtman H, Eriksson G, Norin T, Forsén S. Acta Chem. Scand. 1963; 17: 1151
    • 4c Nilsson M, Norin T. Acta Chem. Scand. 1963; 17: 1157
    • 4d Focella A, Teitel S, Brossi A. J. Org. Chem. 1977; 42: 3456
    • 4e Cleaver L, Croft JA, Ritchie E, Taylor WC. Aust. J. Chem. 1976; 29: 1989
    • 4f Rosenmund KW, Herzberg H, Schütt H. Chem. Ber. 1954; 87: 1258
    • 4g Jaxa-Chamiec AA, Sammes PG. J. Chem. Soc., Chem. Commun. 1978; 118
    • 4h Jaxa-Chamiec AA, Sammes PG. J. Chem. Soc., Perkin Trans. 1 1980; 170
    • 4i Krishnamurty HG, Siva Prasad J. Tetrahedron Lett. 1975; 16: 2511
    • 4j Kablaoui MS. J. Org. Chem. 1974; 39: 3696
    • 4k Chandrasekharan V, Unnikrishnan P, Shah GD, Bhattacharyya SC. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1978; 16: 970
    • 5a Johansson Seechurn CC. C, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
    • 5b Ackermann L, Vicente R, Kapdi AR. Angew. Chem. Int. Ed. 2009; 48: 9792
    • 6a Ball LT, Lloyd-Jones GC, Russell CA. Science 2012; 337: 1644
    • 6b Kirste A, Elsler B, Schnakenburg G, Waldvogel SR. J. Am. Chem. Soc. 2012; 134: 3571
    • 7a Dol GC, Kamer PC. J, van Leeuwen PW. N. M. Eur. J. Org. Chem. 1998; 359
    • 7b Fürstner A, Seidel G. J. Org. Chem. 1997; 62: 2332
    • 7c Alonso E, Ramón DJ, Yus M. J. Org. Chem. 1997; 62: 417
    • 7d Dennis EG, Jeffery DW, Perkins MV, Smith PA. Tetrahedron 2011; 67: 2125
    • 8a Yesilyurt V, Ramireddy R, Thayumanavan S. Angew. Chem. Int. Ed. 2011; 50: 3038
    • 8b Gerber R, Blacque O, Frech CM. Dalton Trans. 2011; 40: 8996
    • 9a Golounin AV, Koptyug VA. J. Org. Chem. USSR (Engl. Transl.) 1973; 2377
    • 9b Repinskaya IB, Altukhova LM, Koptyug VA. J. Org. Chem. USSR (Engl. Transl.) 1977; 1326
    • 9c Repinskaya IB, Barkhutova DD, Makarova ZS, Alekseeva AV, Koptyug VA. J. Org. Chem. USSR (Engl. Transl.) 1985; 759
    • 9d Koptyug VA, Andreeva TP. J. Org. Chem. USSR (Engl. Transl.) 1972; 2490
    • 9e Koptyug VA, Golounin AV. J. Org. Chem. USSR (Engl. Transl.) 1974; 2172
    • 10a Olah GA, Mo YK. J. Am. Chem. Soc. 1972; 94: 5341
    • 10b Koptyug VA. Zh. Vses. Khim. O–va. im. D. I. Mendeleeva 1976; 316
    • 10c Jacquesy JC, Coustard JM, Jouannetaud MP. Top. Catal. 1998; 6: 1
  • 11 Rosenmund KW, Schulz H. Arch. Pharm. (Weinheim, Ger.) 1927; 308
    • 12a Jaxa-Chamiec AA, Sammes PG. J. Chem. Soc. 1978; 118
    • 12b Cotterill PJ, Owen PJ, Scheinmann F. J. Chem. Soc., Perkin Trans. 1 1974; 2423
    • 13a Scholl A, Seer C. Justus Liebigs Ann. Chem. 1912; 394: 111
    • 13b Simpson CD, Mattersteig G, Martin K, Gherghel LR, Bauer E, Räder H, Müllen K. J. Am. Chem. Soc. 2004; 126: 3139
  • 14 Wessjohann L, Mühlbauer A, Sinks U. Acta Chem. Scand. 1997; 51: 1112