Synlett 2013; 24(20): 2671-2674
DOI: 10.1055/s-0033-1339897
letter
© Georg Thieme Verlag Stuttgart · New York

Cryptand-22 as an Efficient Ligand for the Palladium-Catalyzed Mizoroki–Heck Reaction under Air

Barahman Movassagh*
Department of Chemistry, K. N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran   Fax: +98(21)22853650   Email: bmovass1178@yahoo.com
,
Shahriar Yasham
Department of Chemistry, K. N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran   Fax: +98(21)22853650   Email: bmovass1178@yahoo.com
,
Mozhgan Navidi
Department of Chemistry, K. N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran   Fax: +98(21)22853650   Email: bmovass1178@yahoo.com
› Author Affiliations
Further Information

Publication History

Received: 06 August 2013

Accepted after revision: 05 September 2013

Publication Date:
24 October 2013 (online)


Abstract

An efficient catalytic system for the Mizoroki–Heck cross-coupling reaction was developed based on the air- and heat-stable palladium(II) chloride–cryptand 22 complex. The complex is a highly active catalyst for coupling of aryl iodides, bromides, or chlorides with various olefins.

 
  • References and Notes

  • 4 Heck RF. Acc. Chem. Res. 1979; 12: 146
    • 6a Bedford RB, Welch SL. Chem. Commun. 2001; 192
    • 6b Morales-Morales D, Redón R, Yung C, Jensen CM. Chem. Commun. 2000; 1619
    • 6c Gibson S, Foster DF, Eastam GR, Tooze RP, Cole-Hamilton DJ. Chem. Commun. 2001; 779
    • 6d Miyazaki F, Yamaguchi K, Shibasaki M. Tetrahedron Lett. 1999; 40: 7379
  • 7 Yao Q, Kinney EP, Zheng C. Org. Lett. 2004; 6: 2997
  • 11 Strieter ER, Blackmond DG, Buchwald SL. J. Am. Chem. Soc. 2003; 125: 13978
  • 12 Collman JP, Hegedus LS, Norton JR, Finke RG. Principles and Applications of Organotransition Metal Chemistry . University Science Books; Mill Valley: 1987. 2nd ed
  • 13 Navidi M., Movassagh B.; Monatsh. Chem. 2013, 44, 1363
  • 14 Hsu M.-H, Hsu C.-M, Wang J.-C, Sun C.-H. Tetrahedron 2008; 64: 4268
  • 15 Aralkenes 3; General Procedure A 5 mL round-bottomed flask was charged with aryl halide 1 (1 mmol), alkene 2 (1.1 mmol), PdCl2–cryptand 22 (0.009 mmol, 0.9 mol%), Et3N (1.1 mmol), and DMF (1 mL). [For aryl bromides or chlorides, TBAB (1 mmol) was also added]. The mixture was stirred at 130 °C for the appropriate time (Table 2) while the progress of the reaction was monitored (TLC). Upon completion of the reaction, the mixture was cooled to r.t., poured into H2O (10 mL), and extracted with CH2Cl2 (3 × 8 mL). The combined organic extracts were washed with brine (2 × 8 mL), dried (MgSO4), and concentrated. Purification by preparative TLC [silica gel, hexane or hexane–EtOAc (9:1)] gave the pure product. 1-Methyl-4-[(E)-2-phenylvinyl]benzene (3e) White solid; yield: 175 mg (90%); mp 119–122 °C (Lit.2a 120–122 °C). 1H NMR (300 MHz, CDCl3): δ = 2.41 (s, 3 H), 7.13 (s, 2 H), 7.22 (d, J = 7.9 Hz, 2 H), 7.29 (t, J = 7.3 Hz, 1 H), 7.40 (t, J = 7.3 Hz, 2 H), 7.47 (d, J = 7.9 Hz, 2 H), 7.55 (d, J = 7.4 Hz, 2 H). 13C NMR (75 MHz, CDCl3): δ = 21.3, 126.45, 126.49, 127.5, 127.7, 128.65, 128.7, 129.5, 134.6, 137.55, 137.57. 1-Methyl-2-[(E)-2-phenylvinyl]benzene (3f) Pale-yellow oil; yield: 138 mg (72%). 1H NMR (300 MHz, CDCl3): δ = 2.51 (s, 3 H), 7.08 (d, J = 16.1 Hz, 1 H), 7.26–7.47 (m, 7 H), 7.61 (d, J = 7.6 Hz, 2 H), 7.68 (d, J = 6.5 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 20.0, 125.4, 126.3, 126.6, 126.7, 127.65, 127.69, 128.8, 130.1, 130.5, 135.9, 136.5, 137.8. 1-Methoxy-4-[(E)-2-phenylvinyl]benzene (3g) White solid; yield: 168 mg (80%); mp 136–137 °C (Lit.18 135–137 °C). 1H NMR (300 MHz, CDCl3): δ = 3.85 (s, 3 H), 6.89–6.94 (m, 2 H), 6.99 (d, J = 16.3 Hz, 1 H), 7.09 (d, J = 16.3 Hz, 1 H), 7.23–7.28 (m, 1 H), 7.36 (t, J = 7.7 Hz, 2 H), 7.45–7.52 (m, 4 H). 13C NMR (75 MHz, CDCl3): δ = 55.3, 114.1, 126.3, 126.6, 127.2, 127.7, 128.2, 128.7, 130.1, 137.7, 159.3. Butyl (2E)-3-(4-Methoxyphenyl)acrylate (3i) Colorless oil; yield: 200 mg (92%). 1H NMR (300 MHz, CDCl3): δ = 0.97 (t, J = 7.3 Hz, 3 H), 1.43 (sext, J = 7.4 Hz, 2 H), 1.70 (quin, J = 6.6 Hz, 2 H), 2.34 (s, 3 H), 4.20 (t, J = 6.6 Hz, 2 H), 6.39 (d, J = 16.0 Hz, 1 H), 7.16 (d, J = 8.0 Hz, 2 H), 7.40 (d, J = 8.0 Hz, 2 H), 7.66 (d, J = 16.0 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 13.8, 19.2, 21.4, 30.8, 64.3, 117.2, 128.0, 129.6, 131.7, 140.5, 144.5, 167.2. Butyl (2E)-3-(2-Thienyl)acrylate (3j) Pale-yellow oil; yield: 197 mg (94%). 1H NMR (300 MHz, CDCl3): δ = 0.96 (t, J = 7.3 Hz, 3 H), 1.43 (sext, J = 7.2 Hz, 2 H), 1.68 (quin, J = 6.8 Hz, 2 H), 4.19 (t, J = 6.6 Hz, 2 H), 6.24 (d, J = 15.7 Hz, 1 H), 7.04 (t, J = 4.9 Hz, 1 H), 7.24–7.27 (m, 1 H), 7.36 (d, J = 4.9 Hz, 1 H), 7.77 (d, J = 15.7 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 13.8, 19.2, 30.8, 64.4, 117.0, 128.1, 128.3, 130.8, 137.0, 139.6, 166.9. 4-[(E)-2-Phenylvinyl]benzonitrile (3q) White solid; yield: 168 mg (82%); mp 115–118 °C (Lit.21 116–118 °C). 1H NMR (300 MHz, CDCl3): δ = 7.09 (d, J = 16.3 Hz, 1 H), 7.23 (d, J = 16.3 Hz, 1 H), 7.26–7.42 (m, 3 H), 7.53–7.66 (m, 6 H). 13C NMR (75 MHz, CDCl3): δ = 110.6, 119.1, 126.7, 126.88, 126.94, 128.7, 128.9, 132.4, 132.5, 136.3, 141.8. 4-[(E)-2-Phenylvinyl]benzaldehyde (3r) Pale-yellow solid; yield: 176 mg (85%); mp 117–118 °C (Lit.22 115–116 °C). 1H NMR (300 MHz, CDCl3): δ = 7.15 (d, J = 16.3 Hz, 1 H), 7.28 (d, J = 16.3 Hz, 1 H), 7.32–7.42 (m, 3 H), 7.56 (d, J = 7.2 Hz, 2 H), 7.66 (d, J = 7.7 Hz, 2 H), 7.88 (d, J = 7.7 Hz, 2 H), 10.0 (s, 1 H). 13C NMR (75 MHz, CDCl3): δ = 126.9, 127.3, 128.5, 128.9, 130.3, 132.2, 135.3, 136.5, 143.4, 191.7. 1-{4-[(E)-2-Phenylvinyl]phenyl}ethanone (3t) Pale-yellow solid; yield: 142 mg (64%); mp 143–145 °C (Lit.22 144–145 °C). 1H NMR (300 MHz, CDCl3): δ = 2.62 (s, 3 H), 7.13 (d, J = 16.3 Hz, 1 H), 7.24 (d, J = 16.3 Hz, 1 H), 7.28–7.33 (m, 1 H), 7.39 (t, J = 7.2 Hz, 2 H), 7.54 (d, J = 7.8 Hz, 2 H), 7.59 (d, J = 8.2 Hz, 2 H), 7.96 (d, J = 8.2 Hz, 2 H). 13C NMR (75 MHz, CDCl3): δ = 26.6, 126.5, 126.8, 127.4, 128.3, 128.8, 128.9, 131.5, 135.9, 136.7, 142.0, 197.5.
  • 16 Wu Y, Hou J, Yun H, Cui X, Yuan R. J. Organomet. Chem. 2001; 637–639: 793
  • 17 Yao Q, Kinney EP, Yang Z. J. Org. Chem. 2003; 68: 7528
  • 18 Dighe MG, Degani MS. ARKIVOC 2011; (xi): 189
  • 19 Polshettiwar V, Hesemann P, Moreau JJ. E. Tetrahedron 2007; 63: 6784
  • 20 Berthiol F, Feuerstein M, Doucet H, Santelli M. Tetrahedron Lett. 2002; 43: 5625
  • 21 Sugihara T, Satoh T, Miura M, Nomura M. Adv. Synth. Catal. 2004; 346: 1765
  • 22 Baker BR, Gibson RE. J. Med. Chem. 1971; 14: 315
  • 23 Iranpoor N, Firouzabadi H, Tarassoli A, Fereidoonnezhad M. Tetrahedron 2010; 66: 2415
  • 24 Gaikwad DS, Park Y, Pore DM. Tetrahedron Lett. 2012; 53: 3077