Synthesis 2013; 45(23): 3199-3210
DOI: 10.1055/s-0033-1340045
short review
© Georg Thieme Verlag Stuttgart · New York

Carbon–Carbon Bond Formation through Palladium Homoenolates

Nisha Nithiy
Department of Chemistry, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada   Fax: +1(416)7365936   Email: aorellan@yorku.ca
,
David Rosa
Department of Chemistry, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada   Fax: +1(416)7365936   Email: aorellan@yorku.ca
,
Arturo Orellana*
Department of Chemistry, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada   Fax: +1(416)7365936   Email: aorellan@yorku.ca
› Author Affiliations
Further Information

Publication History

Received: 22 July 2013

Accepted after revision: 30 September 2013

Publication Date:
04 November 2013 (online)


Abstract

Homoenolates represent a useful class of umpolung synthons with the potential to greatly streamline complex molecule synthesis. Because the direct formation of homoenolates faces many limitations, a number of alternative approaches to this synthon have been developed. In this review we present the main strategies for the generation and application of palladium homoenolates. We highlight the merits and limitations of each approach, and comment on aspects of the mechanism of these reactions where appropriate.

1 Introduction

1.1 Palladium Homoenolates

1.2 Scope of this Review

2 Generation of Palladium Homoenolates via Transmetalation of Pre-Formed Homoenolates

2.1 Transmetalation of Zinc Homoenolates

2.2 Transmetalation of Boron Homoenolates

2.3 Transmetalation of Indium Homoenolates

3 Catalytic Generation of Palladium Homoenolates by Ring Cleavage of Cyclopropanol Derivatives

4 Generation of Homoenolates via Palladium-Catalyzed C–H Activation

5 Generation of Homoenolates via Palladium-Catalyzed Isomerization of Enolates

6 Conclusions and Outlook

 
  • References

  • 1 Nickon A, Lambert JL. J. Am. Chem. Soc. 1962; 84: 4604
    • 2a Kuwajima I. Pure Appl. Chem. 1988; 60: 115
    • 2b Kuwajima I, Nakamura I. Top. Curr. Chem. 1990; 155: 1
    • 2c Kuwajima I, Nakamura E In Comprehensive Organic Synthesis . Vol. 2. Trost B, Fleming I. Pergamon; Oxford: 1991: 441
    • 2d For the generation of homoenolates from cyclopropane acetals and a range of main-group metals, see: Nakamura E, Shimada J, Kuwajima I. Organometallics 1985; 4: 641
  • 3 Tamaru Y, Ochiai H, Nakamura T, Tsubaki K, Yoshida Z. Tetrahedron Lett. 1985; 26: 5559
  • 4 Tamaru Y, Ochiai H, Nakamura T, Yoshida Z. Tetrahedron Lett. 1986; 27: 955
  • 5 Tamaru Y, Ochiai H, Nakamura T, Yoshida Z. Angew. Chem., Int. Ed. Engl. 1987; 26: 1157
  • 6 Nakamura E, Kuwajima I. Tetrahedron Lett. 1986; 27: 83
  • 7 Nakamura E, Aoki S, Sekiya K, Oshino H, Kuwajima I. J. Am. Chem. Soc. 1987; 109: 8056
  • 8 Nakamura E, Sekiya K, Kuwajima I. Tetrahedron Lett. 1987; 28: 337
  • 9 Scherer S, Meudt A, Nerdinger S, Lehnemann B, Jagusch T, Snieckus V. WO 2006097221, 2006
  • 10 Molander GA, Petrillo DE. Org. Lett. 2008; 10: 1795
  • 11 Molander GA, Jean-Gérard L. J. Org. Chem. 2009; 74: 1297
  • 12 Molander GA, Jean-Gérard L. J. Org. Chem. 2009; 74: 5446
  • 13 Molander GA, Shin I, Jean-Gérard L. Org. Lett. 2010; 12: 4384
  • 14 Sandrock DL, Jean-Gérard L, Chen C, Dreher SD, Molander GA. J. Am. Chem. Soc. 2010; 132: 17108
  • 15 Mun S, Lee J.-E, Yun J. Org. Lett. 2006; 8: 4887
  • 16 Whiting A. Tetrahedron Lett. 1991; 32: 1503
  • 17 A one-pot borylation/cross-coupling approach has also been explored: Bonet A, Gulyás H, Koshevoy IO, Estevan F, Sanaú M, Úbeda MA, Fernández E. Chem. Eur. J. 2010; 16: 6382
  • 18 Lee JC. H, McDonald R, Hall D. Nat. Chem. 2011; 3: 894
  • 19 Shen Z.-L, Wang S.-Y, Chok Y.-K, Xu Y.-H, Loh T.-P. Chem. Rev. 2013; 113: 271
  • 20 Shen Z.-L, Goh KK. K, Cheong H.-L, Wong CC. A, Lai Y.-C, Yang Y.-S, Loh T.-P. J. Am. Chem. Soc. 2010; 132: 15852
  • 21 Shen Z.-L, Lai Y.-C, Wong CH. A, Goh KK. K, Yang Y.-S, Cheong H.-L, Loh T.-P. Org. Lett. 2011; 13: 422
  • 22 Shen Z.-L, Goh KK. K, Wong CH. A, Yang Y.-S, Lai Y.-C, Cheong H.-L, Loh T.-P. Chem. Commun. 2011; 47: 4778
  • 23 Aoki S, Fujimura T, Nakamura E, Kuwajima I. J. Am. Chem. Soc. 1988; 110: 3296
  • 24 Aoki S, Fujimura T, Nakamura E, Kuwajima I. Tetrahedron Lett. 1989; 30: 6541
  • 25 Kang S.-K, Yamagushi T, Ho P.-S, Kim W.-Y, Yoon S.-K. Tetrahedron Lett. 1997; 38: 1947
  • 26 Aoki S, Nakamura E. Synlett 1990; 741
  • 27 Fujimura T, Aoki S, Nakamura E. J. Org. Chem. 1991; 56: 2809
  • 28 Park S.-B, Cha JK. Org. Lett. 2000; 2: 147
  • 29 Okumoto H, Jinnai T, Shimizu H, Harada Y, Mishima H, Suzuki A. Synlett 2000; 629
  • 30 Rosa D, Orellana A. Org. Lett. 2011; 13: 110
  • 31 Rosa D, Orellana A. Chem. Commun. 2013; 49: 5420
  • 32 Cheng K, Walsh PJ. Org. Lett. 2013; 15: 2298
  • 33 Parida BB, Das PP, Niocel M, Cha JK. Org. Lett. 2013; 15: 1780
  • 34 Rosa D, Orellana A. Chem. Commun. 2012; 48: 1922
  • 35 Zaitsev GV, Shabashov D, Daugulis O. J. Am. Chem. Soc. 2005; 127: 13154
  • 36 Shabshov D, Daugulis O. J. Am. Chem. Soc. 2010; 132: 3965
    • 37a Reddy BV. S, Reddy LR, Corey EJ. Org. Lett. 2006; 8: 3391
    • 37b Zhang S.-Y, Li Q, He G, Nack WA, Chen G. J. Am. Chem. Soc. 2013; 135: 12135
    • 37c Chen K, Hu F, Zhang S.-Q, Shi B.-F. Chem. Sci. 2013; 4: 3906
    • 38a Feng Y, Chen G. Angew. Chem. Int. Ed. 2010; 49: 958
    • 38b Li BT. Y, White JM, Hutton CA. Aust. J. Chem. 2010; 63: 438
  • 39 Gutekunst WR, Baran PS. J. Am. Chem. Soc. 2011; 133: 19076
  • 40 Gutekunst WR, Gianatassio R, Baran PS. Angew. Chem. Int. Ed. 2012; 51: 7507
  • 41 Feng Y, Wang Y, Landgraf B, Liu S, Chen G. Org. Lett. 2010; 12: 3414
  • 42 Parella R, Gopalakrishnan B, Babu SA. Org. Lett. 2013; 15: 3238
  • 43 Giri R, Maugel N, Li J.-J, Wang D.-H, Breazzano SP, Saunders LB, Yu J.-Q. J. Am. Chem. Soc. 2007; 129: 3510
  • 44 Wang D.-H, Wasa M, Giri R, Yu J.-Q. J. Am. Chem. Soc. 2008; 130: 7190
  • 45 Wasa M, Engle KM, Yu J.-Q. J. Am. Chem. Soc. 2009; 131: 9886
  • 46 Wasa M, Engle KM, Yu J.-Q. J. Am. Chem. Soc. 2010; 132: 3680
  • 47 Yoo EJ, Wasa M, Yu J.-Q. J. Am. Chem. Soc. 2010; 132: 17378
  • 48 He J, Wasa M, Chan KS. L, Yu J.-Q. J. Am. Chem. Soc. 2013; 135: 3387
  • 49 Wasa M, Engle KM, Lin DW, Yoo EJ, Yu J.-Q. J. Am. Chem. Soc. 2011; 133: 19598
  • 50 Wasa M, Chan KS. L, Zhang X.-G, He J, Miura M, Yu J.-Q. J. Am. Chem. Soc. 2012; 134: 18570
  • 51 Jørgensen M, Lee S, Liu X, Wolkowski JP, Hartwig JF. J. Am. Chem. Soc. 2002; 124: 12557
  • 52 Renaudat A, Jean-Gérard L, Jazzar R, Kefalidis CE, Clot E, Baudoin O. Angew. Chem. Int. Ed. 2010; 49: 7261
  • 53 Larini P, Kefalidis CE, Jazzar R, Renaudat A, Clot E, Baudoin O. Chem. Eur. J. 2012; 18: 1932
  • 54 Leskinen MV, Yip K.-T, Valkonen A, Pihko PM. J. Am. Chem. Soc. 2012; 134: 5750
  • 55 Yip K.-T, Nimje RY, Leskinen MV, Pihko PM. Chem. Eur. J. 2012; 18: 12590
  • 56 Aspin S, Goutierre A.-S, Larini P, Jazzar R, Baudoin O. Angew. Chem. Int. Ed. 2012; 51: 10808