Synthesis 2014; 46(03): 307-312
DOI: 10.1055/s-0033-1340314
paper
© Georg Thieme Verlag Stuttgart · New York

First Total Synthesis of Lippialactone and Its C9 Epimer

Palakodety Radha Krishna*
Organic & Biomolecular Chemistry Division, CSIR - Indian Institute of Chemical Technology, Hyderabad 500 007, India   Fax: +91(40)27160387   eMail: prkgenius@iict.res.in
,
Rajesh Nomula
Organic & Biomolecular Chemistry Division, CSIR - Indian Institute of Chemical Technology, Hyderabad 500 007, India   Fax: +91(40)27160387   eMail: prkgenius@iict.res.in
,
Ramesh Kunde
Organic & Biomolecular Chemistry Division, CSIR - Indian Institute of Chemical Technology, Hyderabad 500 007, India   Fax: +91(40)27160387   eMail: prkgenius@iict.res.in
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 25. September 2013

Accepted after revision: 07. November 2013

Publikationsdatum:
06. Dezember 2013 (online)


Abstract

This paper describes the first total synthesis of bioactive lippialactone and C9-epi-lippialactone adopting Keck asymmetric allylation/Barbier allylation and olefin cross-metathesis as the key steps.

Supporting Information

 
  • References

    • 1a Alemany A, Márquez C, Pascual C, Valverde S, Martínez-Ripoll M, Fayos J, Perales A. Tetrahedron Lett. 1979; 3583
    • 1b Coleman MT. D, English RB, Rivett DE. A. Phytochemistry 1987; 26: 1497
    • 1c Achmad SA, Høyer T, Kjaer A, Makmur L, Norrestam R. Acta Chem. Scand., Ser. B 1987; 41: 599
    • 1d Collett LA, Davies-Coleman MT, Rivett DE. A. Phytochemistry 1998; 48: 651
    • 1e Juliawaty LD, Kitajima M, Takayama H, Achmad SA, Aimi N. Phytochemistry 2000; 54: 989
    • 1f Pereda-Miranda R, Fragoso-Serrano M, Cerda-García-Rojas CM. Tetrahedron 2001; 57: 47
    • 2a Chakraborty TK, Purkait S. Tetrahedron Lett. 2008; 49: 5502
    • 2b Sabitha G, Fatima N, Gopal P, Reddy NC, Yadav JS. Tetrahedron: Asymmetry 2009; 20: 184
    • 2c Sabitha G, Gopal P, Reddy CN, Yadav JS. Tetrahedron Lett. 2009; 50: 6298
    • 2d Kamal A, Balakrishna M, Reddy VP, Faazil S. Tetrahedron: Asymmetry 2010; 21: 2517
    • 2e Reddy SC, Kumar SK. Org. Biomol. Chem. 2012; 10: 2647
    • 2f Sharma A, Gamre S, Chattopadhyay S, Ghadigaonkar S, Koli MR, Choudhary MK. Tetrahedron: Asymmetry 2012; 23: 1093
    • 2g Prasad KR, Phaneendra G. J. Org. Chem. 2013; 78: 3313
    • 3a Sam TW, Yeu CS, Jodynis-Liebert J, Murias M, Bloszyk E. Planta Med. 2000; 66: 199
    • 3b Murga J, Falomoir E, Garcia-Fortanet J, Carda M, Marco JA. Org. Lett. 2002; 4: 3447
    • 4a Hoffmann HM. R, Rabe J. Angew. Chem., Int. Ed. Engl. 1985; 24: 94
    • 4b Rychnovsky SD. Chem. Rev. 1995; 95: 2021
    • 4c Hagen SE, Vara Prasad JV. N, Tait BD. Adv. Med. Chem. 2000; 5: 159
    • 4d Inayat-Hussain SH, Annuar BO, Din LB, Ali AM, Ross D. Toxicol. in Vitro 2003; 17: 433
    • 4e Kikuchi H, Sasaki K, Sekiya J, Maeda Y, Amagai A, Kubohara Y, Ohsima Y. Bioorg. Med. Chem. 2004; 12: 3203
  • 5 Ludere MT, van Ree T, Vleggaar R. Fitoterapia 2013; 86: 188
    • 6a Radha Krishna P, Ramana Reddy VV. Tetrahedron Lett. 2005; 46: 3905
    • 6b Radha Krishna P, Srinivas Reddy P. Tetrahedron 2007; 63: 3995
    • 6c Radha Krishna P, Srinivas R. Tetrahedron Lett. 2007; 48: 2013
    • 6d Radha Krishna P, Srinivas R. Tetrahedron: Asymmetry 2007; 18: 2197
    • 6e Radha Krishna P, Srinivas P. Tetrahedron Lett. 2010; 51: 2295
    • 7a Chatterjee AK, Grubbs RH. Angew. Chem. Int. Ed. 2002; 41: 3171
    • 7b Nolen EG, Kurish AJ, Wong KA, Orlando MD. Tetrahedron Lett. 2003; 44: 2449
    • 7c Grubbs RH. Tetrahedron 2004; 60: 7117
    • 7d Radha Krishna P, Dayakar G. Tetrahedron Lett. 2007; 48: 7279
    • 7e Radha Krishna P, Shiva Kumar E. Tetrahedron Lett. 2009; 50: 6676
    • 7f Truong VL, Marrow M. Tetrahedron Lett. 2010; 51: 758
    • 8a Servi S. J. Org. Chem. 1985; 50: 5867
    • 8b Kirschning A, Kreimeyer M, Blanke HP. Tetrahedron: Asymmetry 1993; 4: 2347
    • 8c Daniel SJ, Myers AG. J. Org. Chem. 2011; 76: 8554
    • 9a Keck GE, Andrus MB, Romer DR. J. Org. Chem. 1991; 56: 417
    • 9b Rawal VH, Zhong HM, Sohn J.-H. J. Org. Chem. 2007; 72: 386
    • 9c Srinivasan KV, Venkatesan K. Tetrahedron: Asymmetry 2008; 19: 209
    • 9d Prasad KR, Penchalaiah K. Tetrahedron: Asymmetry 2010; 21: 2853
    • 10a Yadav JS, Rami Reddy N. Tetrahedron 2010; 66: 3265
    • 10b Radha Krishna P, Rajesh N, Ramana VD. Tetrahedron Lett. 2012; 53: 3612
    • 11a Radha Krishna P, Prabhakar S, Ramna DV. Tetrahedron Lett. 2012; 53: 6843
    • 11b Radha Krishna P, Jagannadha Rao T. Tetrahedron Lett. 2010; 51: 4017
    • 12a Ogawa N, Kobayashi Y. Tetrahedron Lett. 2011; 52: 3001
    • 12b Radha Krishna P, Anitha K, Raju G. Tetrahedron 2013; 69: 1649
    • 13a Still WC, Gennari C. Tetrahedron Lett. 1983; 24: 4405
    • 13b Radha Krishna P, Srinivas P. Tetrahedron Lett. 2010; 51: 2295
  • 14 Wender PA, Koehler MF. T, Sendzik M. Org. Lett. 2003; 5: 4549
  • 15 The diastereomeric ratio of 7a/7b was determined by 1H NMR analysis of the mixture, from the relative integration of the well-resolved, diagnostic protons due to O-CH2-O (MOM) which resonated in 7a at δ 4.80 (q, J = 6.8 Hz), 4.72 (d, J = 6.8 Hz) and 4.64 (d, J = 6.8 Hz), while in 7b the same protons were observed at δ 4.76 (d, J = 6.8 Hz) and 4.70 (q, J = 7.0 Hz). Further, the O-CH3 (MOM) protons appeared at δ 3.46 and 3.39 as singlets in 7a, while in 7b the same protons were observed at δ 3.43 and 3.41. The ratio was also confirmed by HPLC analysis {LCMS [column: XDB-C18, 30% H2O (NH4OAc, 10 mmol) in MeCN, flow rate: 1 mL/min, 230 nm]: t R (major) = 3.825 min, t R (minor) = 4.158 min}.