Synthesis 2014; 46(01): 25-34
DOI: 10.1055/s-0033-1340316
short review
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in the Direct Nucleophilic Substitution of Allylic Alcohols through SN1-Type Reactions

Alejandro Baeza*
Departamento de Química Orgánica and Instituto de Síntesis Orgánica, University of Alicante, Apdo.99, 03080, Alicante, Spain   Fax: +34(965)903549   eMail: alex.baeza@ua.es   eMail: cnajera@ua.es
,
Carmen Nájera*
Departamento de Química Orgánica and Instituto de Síntesis Orgánica, University of Alicante, Apdo.99, 03080, Alicante, Spain   Fax: +34(965)903549   eMail: alex.baeza@ua.es   eMail: cnajera@ua.es
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 03. Oktober 2013

Accepted after revision: 06. November 2013

Publikationsdatum:
25. November 2013 (online)


Abstract

Direct nucleophilic substitution reactions of allylic alcohols are environmentally friendly, since they generate only water as a byproduct, allowing access to new allylic compounds. This reaction has, thus, attracted the interest of the chemical community and several strategies have been developed for its successful accomplishment. This review gathers the latest advances in this methodology involving SN1-type reactions.

1 Introduction

2 SN1-Type Direct Nucleophilic Substitution Reactions of Allylic­ Alcohols

2.1 Lewis Acids as Catalysts

2.2 Brønsted Acids as Catalysts

2.3 Other Promoters

3 Conclusions and Outlook

 
  • References


    • For recent reviews about the principles of green chemistry, see:
    • 1a Sheldon RA. Chem. Soc. Rev. 2012; 41: 1437
    • 1b Constable DJ. C, Dunn PJ, Hayler JD, Humphrey GR, Leazer Jr JL, Linderman RJ, Lorenz K, Pearlman BA, Wells A, Zaks A, Zhang TY. Green Chem. 2007; 9: 411; and references therein
  • 2 Trost BM. Angew. Chem., Int. Ed. Engl. 1995; 34: 259

    • For example, see:
    • 3a Paquin J.-F, Lautens M In Comprehensive Asymmetric Catalysis, Supplement 2 . Jacobsen EN, Pfaltz A, Yamamoto H. Springer; Heidelberg: 2004: 73
    • 3b Palladium Reagents and Catalysis . Tsuji J. Wiley; Chichester: 2004
    • 3c Handbook of Organopalladium Chemistry for Organic Systems . Vol. II. Negishi E. Wiley; New York: 2002. Chap. V.2, 1669

    • For reviews about asymmetric allylic substitutions for example, see:
    • 3d Trost BM, Zhang T, Sieber JD. Chem. Sci. 2010; 1: 427
    • 3e Miyabe H, Takemoto Y. Synlett 2005; 1641
    • 3f Trost BM, Crawley ML. Chem. Rev. 2003; 103: 2921; and references therein

      For recent reviews on transition-metal-catalyzed allylic substitution reactions of alcohols, see:
    • 4a Sundararaju B, Achard M, Bruneau C. Chem. Soc. Rev. 2012; 41: 4467
    • 4b Muzart J. Eur. J. Org. Chem. 2007; 3077
  • 5 For recent review on SN1-type direct nucleophilic substitution of free alcohols, see: Emer E, Sinisi R, Guiteras-Capdevila M, Petruzziello D, De Vincentiis F, Cozzi PG. Eur. J. Org. Chem. 2011; 647

    • For recent reviews about the use of gold as catalyst in transformations involving alcohols, see:
    • 6a Cera G, Chiarucci M, Bandini M. Pure Appl. Chem. 2012; 84: 1673
    • 6b Biannic B, Aponick A. Eur. J. Org. Chem. 2011; 6605
    • 6c Muzart J. Tetrahedron 2008; 64: 5815
  • 7 Biswas S, Samec JS. M. Chem. Asian. J. 2013; 8: 974
  • 8 Giner X, Trillo P, Nájera C. J. Organomet. Chem. 2011; 696: 357
  • 9 Chen G.-Q, Xu Z.-J, Cahn SL.-F, Zhou C.-Y, Che C.-M. Synlett 2011; 2713
  • 10 Rueping M, Vila C, Uria U. Org. Lett. 2012; 14: 768
  • 11 Ren K, Li P, Wang L, Zhang X. Tetrahedron 2011; 67: 2753
  • 12 Our group, among others, reported the use of cationic gold(I) complexes for the direct amination reaction onto free allylic alcohols (see refs. 6 and 8).
  • 13 Ohshima T, Nakahara Y, Ipposhi J, Miyamoto Y, Mashima K. Chem. Commun. 2011; 47: 8322
  • 14 Ohshima T, Ipposhi J, Nakahara Y, Shibuya R, Mashima K. Adv. Synth. Catal. 2012; 354: 2447
  • 15 Yamamoto H, Ho E, Sasaki I, Mitsutake M, Takagi Y, Imagawa H, Nishizawa M. Eur. J. Org. Chem. 2011; 2417
  • 16 Babu SA, Yasuda M, Tsukahara Y, Yamauchi T, Wada Y, Baba A. Synthesis 2008; 1717
  • 17 Fan G.-P, Liu Z, Wang G.-W. Green Chem. 2013; 15: 1659
  • 18 Theerthagiri P, Lalitha A. Tetrahedron Lett. 2012; 53: 5535
  • 19 Meng B, Ma S. Org. Lett. 2012; 14: 2674
  • 20 Qin H, Yamagiwa N, Matsunaga S, Shibasaki M. Angew. Chem. Int. Ed. 2007; 46: 409
    • 21a Narayana-Kumar GG. K. S, Laali KK. Org. Biomol. Chem. 2012; 10: 7347
    • 21b Aridoss G, Laali KK. Tetrahedron Lett. 2011; 52: 6859
  • 22 Shukla P, Choudhary MK, Nayak SK. Synlett 2011; 1585
  • 23 Das BG, Nallagonda R, Ghorai P. J. Org. Chem. 2012; 77: 5577

    • Heterobimetallic Sn–Pd complex as catalyst:
    • 24a Das D, Pratihar S, Roy UK, Mal D, Roy S. Org. Biomol. Chem. 2012; 10: 4537

    • Heterobimetallic Sn–Ir complex as catalyst:
    • 24b Chatterjee PN, Roy S. Tetrahedron 2012; 68: 3776
    • 24c Maity AK, Chatterjee PN, Roy S. Tetrahedron 2013; 69: 942
    • 25a Meyer VJ, Niggemann M. Eur. J. Org. Chem. 2011; 3671
    • 25b Haubenreisser S, Niggemann M. Adv. Synth. Catal. 2011; 353: 469
    • 25c Niggemann M, Meel MJ. Angew. Chem. Int. Ed. 2010; 49: 3684

    • For a review on the use of Ca(II) as a Lewis Acid catalyst, see:
    • 25d Begouin J.-M, Niggemann M. Chem. Eur. J. 2013; 19: 8030
  • 26 Liu Z, Wang D, Chen Y. Lett. Org. Chem. 2011; 8: 73
    • 27a Li M.-M, Zhang Q, Yue H.-L, Ma L, Ji J.-X. Tetrahedron Lett. 2012; 53: 317

    • The analogous alkenyl bromides and chlorides were previously reported using 40–50 mol% of the FeBr3 and FeCl3, respectively, see:
    • 27b Biswas S, Maiti S, Jana U. Eur. J. Org. Chem. 2009; 2354
    • 27c Liu Z.-Q, Wang J, Han J, Zhao Y, Zhou B. Tetrahedron Lett. 2009; 50: 1240

      For intermolecular version, see:
    • 28a Jana U, Biswas S, Maiti S. Tetrahedron Lett. 2007; 48: 4065
    • 28b Jana U, Maiti S, Biswas S. Tetrahedron Lett. 2007; 48: 7160
    • 28c Jana U, Maiti S, Biswas S. Tetrahedron Lett. 2008; 49: 858

    • For intramolecular version, see:
    • 28d Guérinot A, Serra-Muns A, Gnamm C, Bensoussan C, Reymond S, Cossy J. Org. Lett. 2010; 12: 1808
    • 28e Guérinot A, Serra-Muns A, Bensoussan C, Reymond S, Cossy J. Tetrahedron 2011; 67: 5024
  • 29 Trillo P, Baeza A, Nájera C. Eur. J. Org. Chem. 2012; 2929
  • 30 Trillo P, Baeza A, Nájera C. ChemCatChem 2013; 5: 1538
  • 31 Wang Z, Li S, Yu B, Wu H, Wang Y, Sun X. J. Org. Chem. 2012; 77: 8615
  • 32 Kaper H, Bouchmella K, Mutin PH, Goettmann F. ChemCatChem 2012; 4: 1813
    • 33a Han F, Yang L, Li Z, Xia C. Adv. Synth. Catal. 2012; 354: 1052

    • The same sulfonic acid functionalized ionic liquids have been successfully employed for the reaction of dicarbonyl compounds with benzylic, allylic, and propargylic alcohols:
    • 33b Funabiki K, Komeda T, Kubota Y, Matsui M. Tetrahedron 2009; 65: 7457
  • 34 Yue H.-L, Wei W, Li M.-M, Yang Y.-R, Ji J.-X. Adv. Synth. Catal. 2011; 353: 3139
  • 35 For example, see: Sanz R, Martínez A, Miguel D, Álvarez-Gutiérrez JM, Rodríguez F. Adv. Synth. Catal. 2006; 348: 1841
  • 36 Reddy CJ, Jithender E, Krishna G, Reddy GV, Jagadeesh B. Org. Biomol. Chem. 2011; 9: 3940
  • 37 Xing C, Sun H, Zhang J, Li G, Chi Y.-R. Chem. Eur. J. 2011; 17: 12272
  • 38 For the asymmetric version of this reaction using alcohols that give highly stabilized carbocations and catalyzed by InBr3 and imidazolidinone MacMillan’s organocatalyst, see: Guiteras-Capdevila M, Benfatti F, Zoli L, Stenta M, Cozzi PG. Chem. Eur. J. 2010; 16: 11237
  • 39 Zheng Z.-J, Liu L.-X, Gao G, Dong H, Jiang J.-X, Lai G.-Q, Xu L.-W. RSC Adv. 2012; 2: 2895

    • For the use of H2SO4, see:
    • 40a Xia F, Zhao ZL, Liu PN. Tetrahedron Lett. 2012; 53: 2828

    • For the use of HBF4, see:
    • 40b Liu PN, Xia F, Ren Y, Chen J. Chin. J. Chem. 2011; 29: 2075
  • 41 Aoyama T, Miyota S, Takido T, Kodomari M. Synlett 2011; 2971
  • 42 For example, see: McCubbin JA, Hosseini H, Krokhin OV. J. Org. Chem. 2010; 75: 959
  • 43 Zheng H, Ghanbari S, Nakamura S, Hall DG. Angew. Chem. Int. Ed. 2012; 51: 6187
  • 44 Wang J, Masui Y, Onaka M. ACS Catal. 2011; 1: 446
  • 46 Trillo P, Baeza A, Nájera C. J. Org. Chem. 2012; 77: 7344
  • 47 Zhu A, Li L, Wang J, Zhuo K. Green Chem. 2011; 13: 1244

    • For reviews on the use of allylic alcohols in asymmetric catalysis, see:
    • 48a Bandini M. Angew. Chem. Int. Ed. 2011; 50: 994
    • 48b Bandini M, Cera G, Chiarucci M. Synthesis 2012; 44: 504