RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000084.xml
Synthesis 2014; 46(01): 25-34
DOI: 10.1055/s-0033-1340316
DOI: 10.1055/s-0033-1340316
short review
Recent Advances in the Direct Nucleophilic Substitution of Allylic Alcohols through SN1-Type Reactions
Weitere Informationen
Publikationsverlauf
Received: 03. Oktober 2013
Accepted after revision: 06. November 2013
Publikationsdatum:
25. November 2013 (online)
Abstract
Direct nucleophilic substitution reactions of allylic alcohols are environmentally friendly, since they generate only water as a byproduct, allowing access to new allylic compounds. This reaction has, thus, attracted the interest of the chemical community and several strategies have been developed for its successful accomplishment. This review gathers the latest advances in this methodology involving SN1-type reactions.
1 Introduction
2 SN1-Type Direct Nucleophilic Substitution Reactions of Allylic Alcohols
2.1 Lewis Acids as Catalysts
2.2 Brønsted Acids as Catalysts
2.3 Other Promoters
3 Conclusions and Outlook
-
References
- 1a Sheldon RA. Chem. Soc. Rev. 2012; 41: 1437
- 1b Constable DJ. C, Dunn PJ, Hayler JD, Humphrey GR, Leazer Jr JL, Linderman RJ, Lorenz K, Pearlman BA, Wells A, Zaks A, Zhang TY. Green Chem. 2007; 9: 411; and references therein
- 2 Trost BM. Angew. Chem., Int. Ed. Engl. 1995; 34: 259
- 3a Paquin J.-F, Lautens M In Comprehensive Asymmetric Catalysis, Supplement 2 . Jacobsen EN, Pfaltz A, Yamamoto H. Springer; Heidelberg: 2004: 73
- 3b Palladium Reagents and Catalysis . Tsuji J. Wiley; Chichester: 2004
- 3c Handbook of Organopalladium Chemistry for Organic Systems . Vol. II. Negishi E. Wiley; New York: 2002. Chap. V.2, 1669
- 3d Trost BM, Zhang T, Sieber JD. Chem. Sci. 2010; 1: 427
- 3e Miyabe H, Takemoto Y. Synlett 2005; 1641
- 3f Trost BM, Crawley ML. Chem. Rev. 2003; 103: 2921; and references therein
- 4a Sundararaju B, Achard M, Bruneau C. Chem. Soc. Rev. 2012; 41: 4467
- 4b Muzart J. Eur. J. Org. Chem. 2007; 3077
- 5 For recent review on SN1-type direct nucleophilic substitution of free alcohols, see: Emer E, Sinisi R, Guiteras-Capdevila M, Petruzziello D, De Vincentiis F, Cozzi PG. Eur. J. Org. Chem. 2011; 647
- 6a Cera G, Chiarucci M, Bandini M. Pure Appl. Chem. 2012; 84: 1673
- 6b Biannic B, Aponick A. Eur. J. Org. Chem. 2011; 6605
- 6c Muzart J. Tetrahedron 2008; 64: 5815
- 7 Biswas S, Samec JS. M. Chem. Asian. J. 2013; 8: 974
- 8 Giner X, Trillo P, Nájera C. J. Organomet. Chem. 2011; 696: 357
- 9 Chen G.-Q, Xu Z.-J, Cahn SL.-F, Zhou C.-Y, Che C.-M. Synlett 2011; 2713
- 10 Rueping M, Vila C, Uria U. Org. Lett. 2012; 14: 768
- 11 Ren K, Li P, Wang L, Zhang X. Tetrahedron 2011; 67: 2753
- 12 Our group, among others, reported the use of cationic gold(I) complexes for the direct amination reaction onto free allylic alcohols (see refs. 6 and 8).
- 13 Ohshima T, Nakahara Y, Ipposhi J, Miyamoto Y, Mashima K. Chem. Commun. 2011; 47: 8322
- 14 Ohshima T, Ipposhi J, Nakahara Y, Shibuya R, Mashima K. Adv. Synth. Catal. 2012; 354: 2447
- 15 Yamamoto H, Ho E, Sasaki I, Mitsutake M, Takagi Y, Imagawa H, Nishizawa M. Eur. J. Org. Chem. 2011; 2417
- 16 Babu SA, Yasuda M, Tsukahara Y, Yamauchi T, Wada Y, Baba A. Synthesis 2008; 1717
- 17 Fan G.-P, Liu Z, Wang G.-W. Green Chem. 2013; 15: 1659
- 18 Theerthagiri P, Lalitha A. Tetrahedron Lett. 2012; 53: 5535
- 19 Meng B, Ma S. Org. Lett. 2012; 14: 2674
- 20 Qin H, Yamagiwa N, Matsunaga S, Shibasaki M. Angew. Chem. Int. Ed. 2007; 46: 409
- 21a Narayana-Kumar GG. K. S, Laali KK. Org. Biomol. Chem. 2012; 10: 7347
- 21b Aridoss G, Laali KK. Tetrahedron Lett. 2011; 52: 6859
- 22 Shukla P, Choudhary MK, Nayak SK. Synlett 2011; 1585
- 23 Das BG, Nallagonda R, Ghorai P. J. Org. Chem. 2012; 77: 5577
- 24a Das D, Pratihar S, Roy UK, Mal D, Roy S. Org. Biomol. Chem. 2012; 10: 4537
- 24b Chatterjee PN, Roy S. Tetrahedron 2012; 68: 3776
- 24c Maity AK, Chatterjee PN, Roy S. Tetrahedron 2013; 69: 942
- 25a Meyer VJ, Niggemann M. Eur. J. Org. Chem. 2011; 3671
- 25b Haubenreisser S, Niggemann M. Adv. Synth. Catal. 2011; 353: 469
- 25c Niggemann M, Meel MJ. Angew. Chem. Int. Ed. 2010; 49: 3684
- 25d Begouin J.-M, Niggemann M. Chem. Eur. J. 2013; 19: 8030
- 26 Liu Z, Wang D, Chen Y. Lett. Org. Chem. 2011; 8: 73
- 27a Li M.-M, Zhang Q, Yue H.-L, Ma L, Ji J.-X. Tetrahedron Lett. 2012; 53: 317
- 27b Biswas S, Maiti S, Jana U. Eur. J. Org. Chem. 2009; 2354
- 27c Liu Z.-Q, Wang J, Han J, Zhao Y, Zhou B. Tetrahedron Lett. 2009; 50: 1240
- 28a Jana U, Biswas S, Maiti S. Tetrahedron Lett. 2007; 48: 4065
- 28b Jana U, Maiti S, Biswas S. Tetrahedron Lett. 2007; 48: 7160
- 28c Jana U, Maiti S, Biswas S. Tetrahedron Lett. 2008; 49: 858
-
28d Guérinot A, Serra-Muns A, Gnamm C, Bensoussan C, Reymond S, Cossy J. Org. Lett. 2010; 12: 1808
- 28e Guérinot A, Serra-Muns A, Bensoussan C, Reymond S, Cossy J. Tetrahedron 2011; 67: 5024
- 29 Trillo P, Baeza A, Nájera C. Eur. J. Org. Chem. 2012; 2929
- 30 Trillo P, Baeza A, Nájera C. ChemCatChem 2013; 5: 1538
-
31 Wang Z, Li S, Yu B, Wu H, Wang Y, Sun X. J. Org. Chem. 2012; 77: 8615
- 32 Kaper H, Bouchmella K, Mutin PH, Goettmann F. ChemCatChem 2012; 4: 1813
- 33a Han F, Yang L, Li Z, Xia C. Adv. Synth. Catal. 2012; 354: 1052
- 33b Funabiki K, Komeda T, Kubota Y, Matsui M. Tetrahedron 2009; 65: 7457
- 34 Yue H.-L, Wei W, Li M.-M, Yang Y.-R, Ji J.-X. Adv. Synth. Catal. 2011; 353: 3139
- 35 For example, see: Sanz R, Martínez A, Miguel D, Álvarez-Gutiérrez JM, Rodríguez F. Adv. Synth. Catal. 2006; 348: 1841
- 36 Reddy CJ, Jithender E, Krishna G, Reddy GV, Jagadeesh B. Org. Biomol. Chem. 2011; 9: 3940
- 37 Xing C, Sun H, Zhang J, Li G, Chi Y.-R. Chem. Eur. J. 2011; 17: 12272
- 38 For the asymmetric version of this reaction using alcohols that give highly stabilized carbocations and catalyzed by InBr3 and imidazolidinone MacMillan’s organocatalyst, see: Guiteras-Capdevila M, Benfatti F, Zoli L, Stenta M, Cozzi PG. Chem. Eur. J. 2010; 16: 11237
- 39 Zheng Z.-J, Liu L.-X, Gao G, Dong H, Jiang J.-X, Lai G.-Q, Xu L.-W. RSC Adv. 2012; 2: 2895
- 40a Xia F, Zhao ZL, Liu PN. Tetrahedron Lett. 2012; 53: 2828
- 40b Liu PN, Xia F, Ren Y, Chen J. Chin. J. Chem. 2011; 29: 2075
- 41 Aoyama T, Miyota S, Takido T, Kodomari M. Synlett 2011; 2971
- 42 For example, see: McCubbin JA, Hosseini H, Krokhin OV. J. Org. Chem. 2010; 75: 959
- 43 Zheng H, Ghanbari S, Nakamura S, Hall DG. Angew. Chem. Int. Ed. 2012; 51: 6187
- 44 Wang J, Masui Y, Onaka M. ACS Catal. 2011; 1: 446
- 45a Begué J.-P, Bonnet-Delpon D, Crousse B. Synlett 2004; 18
- 45b Shuklov IA, Dubrovina NV, Börner A. Synthesis 2007; 2925
- 46 Trillo P, Baeza A, Nájera C. J. Org. Chem. 2012; 77: 7344
- 47 Zhu A, Li L, Wang J, Zhuo K. Green Chem. 2011; 13: 1244
For recent reviews about the principles of green chemistry, see:
For example, see:
For reviews about asymmetric allylic substitutions for example, see:
For recent reviews on transition-metal-catalyzed allylic substitution reactions of alcohols, see:
For recent reviews about the use of gold as catalyst in transformations involving alcohols, see:
Heterobimetallic Sn–Pd complex as catalyst:
Heterobimetallic Sn–Ir complex as catalyst:
For a review on the use of Ca(II) as a Lewis Acid catalyst, see:
The analogous alkenyl bromides and chlorides were previously reported using 40–50 mol% of the FeBr3 and FeCl3, respectively, see:
For intermolecular version, see:
For intramolecular version, see:
The same sulfonic acid functionalized ionic liquids have been successfully employed for the reaction of dicarbonyl compounds with benzylic, allylic, and propargylic alcohols:
For the use of H2SO4, see:
For the use of HBF4, see:
For reviews about fluorinated alcohols in organic transformations, see: