Synlett 2014; 25(5): 681-686
DOI: 10.1055/s-0033-1340597
letter
© Georg Thieme Verlag Stuttgart · New York

A Diels–Alder Approach toward the Scaffolds of Polycyclic Sesquiterpenoids with 2-Pyrone

Hai Tong
a   Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610 064, P. R. of China   Fax: +86(28)85413712   Email: chembliu@scu.edu.cn
,
Bo Liu*
a   Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610 064, P. R. of China   Fax: +86(28)85413712   Email: chembliu@scu.edu.cn
b   Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, 345 Lingling Road, Shanghai 200 032, P. R. of China
› Author Affiliations
Further Information

Publication History

Received: 29 October 2013

Accepted after revision: 10 December 2013

Publication Date:
15 January 2014 (online)


Abstract

Functionalized 2-pyrone was synthesized from a known compound through an eight-step reaction sequence. Diels–Alder cycloadditions of this 2-pyrone were investigated, manifesting its ambident property with a series of electronically and sterically distinct dienophiles.

Supporting Information

 
  • References and Notes

  • 1 For a recent example, see: Jones SB, Simmons B, Mastracchio A, MacMillan DW. C. Nature (London) 2011; 475: 183
    • 2a Progress in the Chemistry of Organic Natural Products. Vol. 93. Goessinger E. Chap. 2 Springer; Vienna/New York: 2010: 71-210
    • 2b Suzuki Y, Koike K, Nagahisa M, Nikaido T. Tetrahedron 2003; 59: 6019
    • 2c Conroy H. J. Am. Chem. Soc. 1951; 73: 1889
    • 2d Boullay PF. G. Ann. Chim. Phys. 1811; 80: 209
    • 3a Zheng Y, Shen Y. Org. Lett. 2009; 11: 109
    • 3b Okuda T, Yoshida T. Tetrahedron Lett. 1971; 12: 4499
  • 4 Arnone A, Candiani G, Nasini G, Sinisi R. Tetrahedron 2003; 59: 5033

    • For example, see:
    • 5a Yuan C, Du B, Yang L, Liu B. J. Am. Chem. Soc. 2013; 135: 9291
    • 5b Huang X, Song L, Xu J, Zhu G, Liu B. Angew. Chem. Int. Ed. 2013; 52: 952
    • 5c Yue G, Yang L, Yuan C, Jiang X, Liu B. Org. Lett. 2011; 13: 5406
    • 5d Huang M, Huang C, Liu B. Tetrahedron Lett. 2009; 50: 2797
    • 6a Posner GH, Dai H, Afarinkia K, Murthy NN, Guyton KZ, Kensler TW. J. Org. Chem. 1993; 58: 7209
    • 6b Posner GH, Nelson TD. J. Org. Chem. 1991; 56: 4339
    • 6c Afarinkia K, Bearpark MJ, Ndibwami A. J. Org. Chem. 2005; 70: 1122
    • 6d Afarinkia L, Bearpark MJ, Ndibwami A. J. Org. Chem. 2003; 68: 7158
    • 6e Afarinkia K, Daly NT, Gomez-Farnos S, Joshi S. Tetrahedron Lett. 1997; 38: 2369
    • 6f Jung Y.-G, Lee S.-C, Cho H.-K, Darvatkar NB, Song J.-Y, Cho C.-G. Org. Lett. 2013; 15: 132
    • 6g Jung Y.-K, Kang H.-U, Cho H.-K, Cho C.-G. Org. Lett. 2011; 13: 5890
    • 6h Chang JH, Kang H.-U, Jung I.-H, Cho C.-G. Org. Lett. 2010; 12: 2016
    • 6i Tam NT, Jung E.-J, Cho C.-G. Org. Lett. 2010; 12: 2012
    • 6j Tam NT, Cho C.-G. Org. Lett. 2008; 10: 601
    • 6k Tam NT, Chang J, Jung E.-J, Cho C.-G. J. Org. Chem. 2008; 73: 6258
    • 6l Shin I.-J, Choi E.-S, Cho C.-G. Angew. Chem. Int. Ed. 2007; 46: 2303
    • 6m Tam NT, Cho C.-G. Org. Lett. 2007; 9: 3319
    • 6n Chung S.-I, Seo J, Cho C.-G. J. Org. Chem. 2006; 71: 6701
    • 6o Ryu K, Cho Y.-S, Cho C.-G. Org. Lett. 2006; 8: 3343
    • 6p Shin J.-T, Hong S.-C, Shin S, Cho C.-G. Org. Lett. 2006; 8: 3339
    • 7a Kozytska MV, Dudley GB. Tetrahedron Lett. 2008; 49: 2899
    • 7b Nelson HM, Stoltz BM. Org. Lett. 2008; 10: 25
    • 8a Juranovic A, Kranjc K, Perdih F, Polanc S, Kocevar M. Tetrahedron 2011; 67: 3490
    • 8b Afarinkia K, Abdullahi MH, Scowen IJ. Org. Lett. 2010; 12: 5564
    • 8c Afarinkia K, Abdullahi MH, Scowen IJ. Org. Lett. 2009; 11: 5182
    • 8d Afarinkia K, Mahmood F. Tetrahedron 1999; 55: 3129
    • 8e Augustyns B, Maulide N, Marko IE. Tetrahedron Lett. 2005; 46: 3895
    • 8f Marko IE, Warriner SL, Augustyns B. Org. Lett. 2000; 2: 3123
    • 8g Chen C.-H, Liao C.-C. Org. Lett. 2000; 2: 2049
    • 8h Kusama H, Mori T, Mitani I, Kashima H, Kuwajima I. Tetrahedron Lett. 1997; 38: 4129
    • 8i Posner GH, Dai H, Bull DS, Lee J.-K, Eydoux F, Ishihara Y, Welsh W, Pryor N, Petr SJr. J. Org. Chem. 1996; 61: 671
    • 8j Posner GH, John N. J. Org. Chem. 1994; 59: 7855
    • 8k Posner GH, Eydoux F, Lee JK, Bull DS. Tetrahedron Lett. 1994; 35: 7541
    • 9a Wu W, Min L, Zhu L, Lee C.-S. Adv. Synth. Catal. 2011; 353: 1135
    • 9b Wu W, He S, Zhou X, Lee C.-S. Eur. J. Org. Chem. 2010; 1124
    • 9c Zhou X, Wu W, Liu X, Lee C.-S. Org. Lett. 2008; 10: 5525
    • 9d Tolmachova NA, Gerus II, Essers M, Fröhlich R, Haufe G. Eur. J. Org. Chem. 2006; 4704
    • 9e Okada M, Ito S, Matsubara A, Iwakura I, Egoshi S, Ueda M. Org. Biomol. Chem. 2009; 7: 3065
    • 9f Kranjc K, Perdih F, Kocevar M. J. Org. Chem. 2009; 74: 6303
    • 9g Kranjc K, Kocevar M. Tetrahedron 2008; 64: 45
    • 9h Kranjc K, Kocevar M, Iosif F, Coman SM, Parvulescu V, Genin E, Genet J.-P, Michelet V. Synlett 2006; 1075
    • 9i Kranjc K, Polanc S, Kocevar M. Org. Lett. 2003; 5: 2833
    • 9j Okamura H, Morishige K, Iwagawa T, Nakatani M. Tetrahedron Lett. 1998; 39: 1211
    • 9k Okamura H, Iwagawa T, Nakatani M. Tetrahedron Lett. 1995; 36: 5939
    • 9l Posner GH, Nelson TD, Kinter CM, Johnson N. J. Org. Chem. 1992; 57: 4083
  • 10 Jiang X, Wang R. Chem. Rev. 2013; 113: 5515
    • 11a O’Sullivan TP, Zhang H, Mander LN. Org. Biomol. Chem. 2007; 5: 2627
    • 11b Zhang H, Appels DC, Hockless DC. R, Mander LN. Tetrahedron Lett. 1998; 39: 6577
  • 12 Bonazzi S, Binaghi M, Fellay C, Wach J.-Y, Gademann K. Synthesis 2010; 631
    • 13a Kirkham JD, Butlin RJ, Harrity JP. A. Angew. Chem. Int. Ed. 2012; 51: 6402
    • 13b Kim WS, Kim KH, Kim SH, Kim JN. Tetrahedron Lett. 2009; 50: 5098
    • 14a Afarinkia K, Vinader V, Nelson TD, Posner GH. Tetrahedron 1992; 48: 9111
    • 14b Posner GH, Vinader V, Afarinkia K. J. Org. Chem. 1992; 57: 4088
  • 15 Representative Procedure A mixture of crude 2-pyrone 3 (32.8 mg, 0.20 mmol), methyl acrylate (69.0 mg, 0.80 mmol), and 2,6-di-tert-butyl-4-methylphenol (BHT, 8.8mg, 0.04 mmol) in anhydrous CH2Cl2 (1 mL) was heated at 100 °C in a sealed tube for 10 h. After the reaction, the reaction mixture was concentrated and purified by flash column chromatography on silica gel (PE–EtOAc, 4:1 to 2:1) to give 30.5 mg (0.12 mmol) of 5-endo-12a and 10.2 mg (0.04 mmol) of 6-endo-12b, in yields of 61% and 20%, respectively. Compound 5-endo-12a: IR (thin film): 2951, 1750, 1701, 1641 cm–1. 1H NMR (400 MHz, CDCl3): δ = 5.55 (dd, J = 3.9, 1.2 Hz, 1 H), 3.69 (s, 3 H), 2.95 (dd, J = 10.0, 4.0 Hz, A of AB, 1 H), 2.85–2.78 (m, 1 H), 2.77–2.71 (m, 2 H), 2.64–2.61 (m, 2 H), 1.79 (ddd, J = 13.6, 4.0, 1.2 Hz, B of AB, 1 H), 1.58 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 199.8, 179.6, 172.1, 171.9, 142.8, 69.4, 52.3, 49.7, 43.0, 37.0, 32.9, 26.2, 12.7. HRMS (ES): m/z calcd for C13H18NO5 [M + NH4]+: 268.1179; found: 268.1176. Compound 6-endo-12b: IR (thin film): 2951, 1705, 1642 cm–1. 1H NMR (400 MHz, CDCl3): δ = 5.72 (d, J = 3.6 Hz, 1 H), 3.68 (s, 3 H), 3.52 (m, 1 H), 2.73–2.72 (m, 2 H), 2.60–2.57 (m, 2 H), 2.11 (dd, J = 13.2, 9.2 Hz, A of A B, 1 H), 2.04 (dd, J = 13.2, 5.6 Hz, B of A B, 1 H), 1.58 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 199.5, 181.0, 173.3, 170.6, 141.9, 70.8, 52.9, 47.5, 44.4, 37.0, 31.6, 25.1, 14.5. HRMS (ES): m/z calcd for C13H18NO5 [M + NH4]+: 268.1179; found: 268.1176.