Synthesis 2014; 46(10): 1303-1310
DOI: 10.1055/s-0033-1340883
special topic
© Georg Thieme Verlag Stuttgart · New York

Efficient and Highly Enantioselective Aerobic Oxidation–Michael–Carbocyclization Cascade Transformations by Integrated Pd(0)-CPG Nanoparticle/Chiral Amine Relay Catalysis

Luca Deiana
a   Department of Organic Chemistry, The Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden
,
Lorenza Ghisu
a   Department of Organic Chemistry, The Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden
,
Oscar Córdova
a   Department of Organic Chemistry, The Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden
,
Samson Afewerki
b   Department of Applied Science and Design, Holmgatan 10, 851 70 Sundsvall, Sweden   Fax: +46(15)4908   Email: armando.cordova@miun.se   Email: acordova@organ.su.se
,
Renyun Zhang
b   Department of Applied Science and Design, Holmgatan 10, 851 70 Sundsvall, Sweden   Fax: +46(15)4908   Email: armando.cordova@miun.se   Email: acordova@organ.su.se
,
Armando Córdova*
a   Department of Organic Chemistry, The Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden
b   Department of Applied Science and Design, Holmgatan 10, 851 70 Sundsvall, Sweden   Fax: +46(15)4908   Email: armando.cordova@miun.se   Email: acordova@organ.su.se
› Author Affiliations
Further Information

Publication History

Received: 08 January 2014

Accepted: 08 February 2014

Publication Date:
17 March 2014 (online)


Abstract

A series of highly diastereo- and enantioselective aerobic oxidation–Michael–carbocyclization cascade transformations by integrated heterogeneous Pd(0)-CPG nanoparticle/chiral amine relay catalysis are disclosed. The heterogeneous Pd(0)-CPG nanoparticle catalysts were efficient for both the sequential aerobic oxidation and dynamic kinetic asymmetric Michael–carbocyclization transformations, resulting in 1) oxidation of a variety of allylic alcohols to enals and 2) formation of cyclopentenes containing an all-carbon quaternary stereocenter in good to high yields with up to 20:1 dr and 99.5:0.5 er.

Supporting Information

 
  • References

  • 1 Corey EJ, Cheng X.-M. The Logic of Chemical Synthesis . Wiley-Interscience; New York: 1995
    • 2a Mayer SF, Kroutil W, Faber K. Chem. Rev. 2006; 35: 332
    • 2b Ricca E, Brucher B, Schrittwieser JH. Adv. Synth. Catal. 2011; 353: 2239
    • 4a Veum L, Hanefeld U. Chem. Commun. 2006; 825
    • 4b Sheldon RA, Arends I, Hanefeld U. Green Chemistry and Catalysis . Wiley-VCH; Weinheim: 2007
    • 4c Lee JM, Na Y, Han H, Chang S. Chem. Soc. Rev. 2004; 33: 302

      For selected examples, see:
    • 6a Ibrahem I, Córdova A. Angew. Chem. Int. Ed. 2006; 45: 1952
    • 6b Silvero DL, Torker S, Pilyugina T, Vieira EM, Snapper ML, Haeffner F, Hoveyda AH. Nature 2013; 494: 216
    • 6c Ibrahem I, Samec JS. M, Bäckvall J.-E, Córdova A. Tetrahedron Lett. 2005; 46: 3965
    • 6d Sorimachi K, Terada M. J. Am. Chem. Soc. 2008; 130: 14452
    • 6e Han Z.-Y, Xiao H, Chen X.-H, Gong L.-Z. J. Am. Chem. Soc. 2009; 131: 9182
    • 6f Rueping M, Dufour J, Maji MS. Chem. Commun. 2012; 48: 3406
    • 6g Yang T, Ferrali A, Campbell L, Dixon DJ. Chem. Commun. 2008; 2923
    • 6h Binder JT, Crone B, Haug TT, Menz H, Kirsch SF. Org. Lett. 2008; 10: 1025
    • 6i Jensen KL, Franke PT, Arróniz C, Kobbelgaard S, Jørgensen KA. Chem. Eur. J. 2010; 16: 1750
    • 6j Yu C, Zhang Y, Zhang S, He J, Wang W. Tetrahedron Lett. 2010; 51: 1742
    • 6k Vulovic B, Bihelovic F, Matovic R, Saicic RN. Tetrahedron 2009; 65: 10485
    • 6l Mukherjee S, List B. J. Am. Chem. Soc. 2007; 129: 11336
    • 6m Binder JT, Crone B, Haug TT, Menz H, Kirsch SF. Org. Lett. 2008; 10: 1025
    • 6n Liu D, Xie F, Zhang W. Tetrahedron Lett. 2007; 48: 7591
    • 6o Beeson TD, Mastracchio A, Hong J, Ashton K, MacMillan DW. C. Science 2007; 316: 582
    • 6p Jiang G, List B. Angew. Chem. Int. Ed. 2011; 50: 9471
    • 6q Cherevatskaya M, Füldner S, Harlander C, Neumann M, Kümmel S, Dankesreiter S, Pfitzner A, Zeitler K, König B. Angew. Chem. Int. Ed. 2012; 51: 4062
    • 6r Lin S, Zhao G.-L, Deiana L, Sun J, Zhang Q, Leijonmarck H, Córdova A. Chem. Eur. J. 2010; 16: 13930
    • 6s Sun W, Zhu G, Wu C, Hong L, Wang R. Chem. Eur. J. 2012; 18: 13959
    • 7a Thomas JM. Design and Applications of Single-Site Heterogeneous Catalysts – Contributions to Green Chemistry, Clean Technology and Sustainability. Imperial College Press; London: 2012
    • 7b Corma A, Garcia H. Top. Catal. 2008; 48: 8
    • 7c van Heerbeek R, Kamer PC. J, van Leeuwen PW. N. M, Reek JN. H. Chem. Rev. 2002; 102: 3717
    • 8a Anastas PT, Warner JC. Green Chemistry: Theory and Practice . Oxford University Press; Oxford: 2000
    • 8b Baldini R. Eco-Friendly Synthesis of Fine Chemicals, RSC Green Chemistry Series. Royal Society of Chemistry; London: 2009
  • 9 Deiana, L.; Jiang, Y.; Palo-Nieto, C.; Afewerki, S.; Incerti-Pradillos, C. A.; Verho, O.; Tai, C.-W.; Johnston, E.; Córdova, A. Angew. Chem. Int. Ed. 2014; DOI: 10.1002/anie.201310216.
    • 10a Ping EW, Wallace R, Pierson J, Fuller TF, Jones CW. Micropor. Mesopor. Mater. 2010; 132: 174
    • 10b Shakeri M, Tai C.-W, Göthelid E, Oscarsson S, Bäckvall JE. Chem. Eur. J. 2011; 17: 13269
    • 10c Johnston EV, Verho O, Kärkäs MD, Shakeri M, Tai C.-W, Palmgren P, Eriksson K, Oscarsson S, Bäckvall J.-E. Chem. Eur. J. 2012; 18: 12202
    • 10d Deiana L, Afewerki S, Palo-Nieto C, Verho O, Johnston EV, Córdova A. Sci. Rep. 2012; 2: 851
    • 10e Long W, Brunelli NA, Didas SA, Ping EW, Jones CW. ACS Catal. 2013; 3: 1700
    • 11a Ching LL, Erathodiyil N, Ying JY. Acc. Chem. Res. 2013; 8: 1825
    • 11b Favier I, Madec D, Teuma E, Gomez M. Curr. Org. Chem. 2011; 15: 3127
    • 11c Yin L, Liebscher J. Chem. Rev. 2007; 107: 133

    • 12a Pon RT. Current Protocols in Nucleic Acid Chemistry . Beaucage SL, Glick GD, Bergström DE, Jones RA. Wiley; New York: 2000
    • 12b Pon RT. Solid-Phase Supports for Oligonucleotide Synthesis. In Methods in Molecular Biology: Protocols for Oligonucleotides and Analogs. Vol. 20. Agarwal S. Humana Press; Totowa, NJ: 1993: 465-497

    • 13a Tonks L, Anson MS, Hellgardt K, Mirza AR, Thompson DF, Williams JM. J. Tetrahedron Lett. 1997; 38: 4319

    • This technique has also been used for immobilization of Ru, see:
    • 13b Wan KT, Davis ME. Nature 1994; 370: 449

    • 14a Li J, Mau AW.-H, Strauss CR. Chem. Commun. 1997; 1275
    • 14b Freitag J, Hermann M, Nuchter M, Ondruschka B, Schneider F, Stolle A. Optica Applicata 2005; 35: 745
    • 14c Bonrath W, Ondruschka B, Schmoeger C, Stolle A. Int. Patent WO2010/020671 A1, 2008 ; Chem. Abstr. 2010, 152, 311257.
    • 15a Afewerki S, Ibrahem I, Rydfjord J, Breistein P, Córdova A. Chem. Eur. J. 2012; 18: 2972
    • 15b Ibrahem I, Breistein P, Córdova A. Angew. Chem. Int. Ed. 2011; 50: 12036
    • 15c Ibrahem I, Ma G, Afewerki S, Córdova A. Angew. Chem. Int. Ed. 2013; 52: 878
    • 15d Ma G, Afewerki S, Deiana L, Palo-Nieto C, Liu L, Sun J, Ibrahem I, Córdova A. Angew. Chem. Int. Ed. 2013; 52: 6050
    • 15e Ibrahem I, Santoro S, Himo F, Córdova A. Adv. Synth. Catal. 2011; 353: 245
    • 15f Santoro, S.; Deiana, L.; Zhao, G. -L. Lin, S.; Himo, F.; Córdova, A., manuscript in preparation.
  • 17 Zhao G.-L, Ullah F, Deiana L, Lin S, Zhang Q, Sun J, Ibrahem I, Dziedzic P, Córdova A. Chem. Eur. J. 2010; 16: 1585
  • 18 For a review on the use of protected prolinols as catalysts, see: Mielgo A, Palomo C. Chem. Asian J. 2008; 3: 922