Synlett 2014; 25(08): 1101-1105
DOI: 10.1055/s-0033-1341070
letter
© Georg Thieme Verlag Stuttgart · New York

Efficient and Fast Method for the Preparation of Diaryl Ketones at Room Temperature

Abdol Reza Hajipour*
a   Department of Pharmacology, University of Wisconsin Medical School, 1300 University Avenue, Madison, WI 53706-1532, USA
b   Pharmaceutical Research Laboratory, College of Chemistry, Isfahan University of Technology, Isfahan 84156, Iran   Fax: +98(311)3912350   Email: haji@cc.iut.ac.ir
,
Raheleh Pourkaveh
b   Pharmaceutical Research Laboratory, College of Chemistry, Isfahan University of Technology, Isfahan 84156, Iran   Fax: +98(311)3912350   Email: haji@cc.iut.ac.ir
› Author Affiliations
Further Information

Publication History

Received: 08 January 2014

Accepted after revision: 04 March 2014

Publication Date:
07 April 2014 (online)


Abstract

Palladium-catalyzed cross-coupling reaction of aryl­boronic acids with acid chlorides at room temperature under phosphine-free conditions affords the corresponding aromatic ketones in excellent yields within short times. This synthetic method overcomes common disadvantages of Friedel–Crafts acylation procedures and is compatible with both electron-donating and electron-withdrawing substituents on the aryl ring of the acyl chlorides.

Supporting Information

 
  • References and Notes

  • 1 Ruan J, Saidi O, Iggo J, Xiao J. J. Am. Chem. Soc. 2008; 130: 10510
  • 2 Urawa Y, Ogura K. Tetrahedron Lett. 2003; 44: 271
  • 3 Urawa Y, Nishiura K, Souda S, Ogura K. Synthesis 2003; 2882
  • 4 Korolev DN, Bumagin NA. Russ. Chem. Bull. 2004; 53: 364
  • 5 Bandgar BP, Patil AV. Tetrahedron Lett. 2005; 46: 7627
  • 6 Xin B, Zhang Y, Cheng K. J. Org. Chem. 2006; 71: 5725
  • 7 Zhang L, Wu J, Shi L, Xia C, Li F. Tetrahedron Lett. 2011; 52: 3897
  • 8 Martins DL, Aguiar LC. S, Antunes OA. C. J. Organomet. Chem. 2011; 696: 2845
  • 9 Yu A, Shen L, Cui X, Peng D, Wu Y. Tetrahedron 2012; 68: 2283
  • 10 Fillion E, Fishlock D, Wilsily A, Goll JM. J. Org. Chem. 2005; 70: 1316
  • 11 Feurstner A, Voigtleander D, Schrader W, Giebel D, Reetz MT. Org. Lett. 2001; 3: 417
  • 12 Gmouh S, Yang H, Vaultier M. Org. Lett. 2003; 5: 2219
  • 13 Ross J, Xiao J. Green Chem. 2002; 4: 129
  • 14 Kosugi M, Shimizu Y, Migita T. Chem. Lett. 1977; 1423
    • 15a Labadie JW, Stille JK. J. Am. Chem. Soc. 1983; 105: 669
    • 15b Labadie JW, Stille JK. J. Am. Chem. Soc. 1983; 105: 6129
  • 16 Labadie JW, Still JK. J. Org. Chem. 1983; 48: 4634
  • 17 Rao ML. N, Venkatesh V, Jadhav DN. Tetrahedron Lett. 2006; 47: 6975
  • 18 Rao ML. N, Venkatesh V, Banerjee D. Tetrahedron 2007; 63: 12917
  • 19 Urawa Y, Nishiura K, Souda S, Ogura K. Synthesis 2003; 2882
  • 20 Chen H, Deng MZ. Org. Lett. 2000; 2: 1649
  • 21 Kabalka GW, Malladi RR, Tejedor D, Kelley S. Tetrahedron Lett. 2000; 41: 999
  • 22 Wang XJ, Zhang L, Sun X, Xu Y, Krishnamurthy D, Senanayake CH. Org. Lett. 2005; 7: 5593
  • 23 Sato F, Inoue M, Oguro K, Sato M. Tetrahedron Lett. 1979; 4303
  • 24 Eberle M, Kahle G. Tetrahedron Lett. 1980; 21: 2303
  • 25 Fohlisch B, Flogaus R. Synthesis 1984; 734
  • 26 Corriu RJ. P, Masse JP. J. Chem. Soc., Chem. Commun. 1972; 144a
  • 27 Tamao K, Sumitani K, Kumada M. J. Am. Chem. Soc. 1972; 94: 4374
  • 28 Hajipour AR, Karami K, Rafiee F. Appl. Organomet. Chem. 2012; 26: 27
  • 29 Milstein D, Stille JK. J. Am. Chem. Soc. 1978; 100: 3636
  • 30 Hatanaka Y, Hiyama T. J. Org. Chem. 1988; 53: 918
  • 31 Haddach M, McCarthy JR. Tetrahedron Lett. 1999; 40: 3109
  • 32 Ekoue-Kovi K, Xu H, Wolf C. Tetrahedron Lett. 2008; 49: 5773
  • 33 Jeffery T. Tetrahedron 1996; 52: 10113
  • 34 Ogawa D, Hyodo K, Suetsugu M, Li J, Inoue Y, Fujisawa M, Iwasaki M, Takagi K, Nishihara Y. Tetrahedron 2013; 69: 2565
  • 35 Bumagin NA, Bumagina IG, Kashin AN, Beletskaya IP. Dokl. Akad. Nauk SSSR 1981; 261: 1141
  • 36 Bumagin NA, Bumagina IG, Kashin AN, Beletskaya IP. Zh. Org. Khim. 1982; 18: 1131
  • 37 Bykov VV, Korolev DN, Bumagin NA. Russ. Chem. Bull. 1997; 46: 1631
  • 38 Bumagin NA, Bykov VV. Tetrahedron 1997; 53: 14437
  • 39 Bumagin NA, Korolev DN. Tetrahedron Lett. 1999; 40: 3057
  • 40 Korolev DN, Bumagin NA. Russ. Chem. Bull. 2004; 53: 364
  • 41 Preparation of Catalyst; General Procedure: (–)-Nicotine (1 mmol, 0.16 mL) and benzyl chloride (4 mmol, 0.46 mL) were mixed under solvent-free conditions and the reaction mixture was heated at 70 °C for 6 h. The reaction mixture was treated with CH2Cl2 (5 × 6 mL) to remove the unreacted materials and the organic phase was separated. The residue (0.340 g, 82%) was mixed with PdCl2 (0.177 g PdCl2 per 0.415 g dibenzylated nicotinium salt) in acetone and heated at reflux for 12 h. The supernatant was decantated and washed with acetone (3 × 5 mL) to produce the catalyst (0.530 g, 91%) as a brown powder. Suzuki-Type Cross-Coupling Reaction; Typical Procedure: An oven-dried round-bottom flask was charged with phenylboronic acid (4 mmol, 0.487 g), benzoyl chloride (2 mmol, 0.23 mL), K2CO3 (4.5 mmol, 0.621 g), CHCl3 (2 mL), and [DBNT][PdCl4] (1 mol%, 0.023 g). The reaction mixture was stirred at r.t. for 35 min, then the solution was extracted with water and EtOAc and separated by column chromatography (silica gel; EtOAc–hexanes, 1:9). All products are known compounds and were characterized by comparing their FT-IR and 1H NMR spectra with those reported in the literature (see Yu et al.9).