Synlett 2014; 25(08): 1188-1189
DOI: 10.1055/s-0033-1341111
spotlight
© Georg Thieme Verlag Stuttgart · New York

Ethyl Dibromofluoroacetate (EDBFA)

Cátia V. Almeida Santos
REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal   Email: cv.santos@fct.unl.pt
› Author Affiliations
Further Information

Publication History

Publication Date:
07 April 2014 (online)

Introduction

Over the last decades, fluorinated organic compounds have increasingly received great attention by the scientific community; in several scientific fields, from material science to medicine. Today, approximately 30% of all agrochemicals and 20% of all pharmaceuticals contain fluorine.[1] [2] The unique properties of fluorinated compounds are due to the high electronegativity of fluorine, the small size of fluorine, and the significant electrostatic character of the C–F bond.[3] The presence of a fluorine atom in organic compounds imparts several properties (basicity, lipophilicity, and metabolic stability) which in some cases enhance the drug-like properties of the molecule.[4]

A useful and commercially available reagent for fluorination of organic compounds is ethyl dibromofluoroacetate [EDBFA (1), Figure [1]].[5]

Zoom Image
Figure 1 Ethyl dibromofluoroacetate (EDBFA)

Fluoroacetate 1 is a solid with a molecular weight of 263.89 g/mol, a boiling point of 173 °C, and a density of 1.92 g/cm3.[5] Derivatives of EDBFA such as compounds 26 (Scheme [1]) are also efficient reagents.[6] Replacement of one bromine atom in 1 by an azide generates a stereocenter, affording ethyl 2-azido-2-bromo-2-fluoroacetate (2). A two-step strategy is used to convert the ester moiety into the corresponding nitrile to give the 2,2-dibromo-2-fluoroacetonitrile (3).

Zoom Image
Scheme 1 Synthesis of EDBFA derivatives

Using lithium borohydride as the reducing agent and trimethylborate, the ester moiety of 1 can be converted into an alcohol to give 2-azido-2-bromo-2-fluoroethan-1-ol (4).[6] [7] It can also be changed into a tertiary amide in the presence of dimethylaluminium chloride, affording 2-azido-2-bromo-N,N-diethyl-2-fluoroacetamide (5) or be transformed in the corresponding acyl chloride, via a three-step procedure, to afford 2-azido-2-bromo-2-fluoroacetyl chloride (6).