Subscribe to RSS
DOI: 10.1055/s-0033-1341111
Ethyl Dibromofluoroacetate (EDBFA)
Publication History
Publication Date:
07 April 2014 (online)
Introduction
Over the last decades, fluorinated organic compounds have increasingly received great attention by the scientific community; in several scientific fields, from material science to medicine. Today, approximately 30% of all agrochemicals and 20% of all pharmaceuticals contain fluorine.[1] [2] The unique properties of fluorinated compounds are due to the high electronegativity of fluorine, the small size of fluorine, and the significant electrostatic character of the C–F bond.[3] The presence of a fluorine atom in organic compounds imparts several properties (basicity, lipophilicity, and metabolic stability) which in some cases enhance the drug-like properties of the molecule.[4]
A useful and commercially available reagent for fluorination of organic compounds is ethyl dibromofluoroacetate [EDBFA (1), Figure [1]].[5]
Fluoroacetate 1 is a solid with a molecular weight of 263.89 g/mol, a boiling point of 173 °C, and a density of 1.92 g/cm3.[5] Derivatives of EDBFA such as compounds 2–6 (Scheme [1]) are also efficient reagents.[6] Replacement of one bromine atom in 1 by an azide generates a stereocenter, affording ethyl 2-azido-2-bromo-2-fluoroacetate (2). A two-step strategy is used to convert the ester moiety into the corresponding nitrile to give the 2,2-dibromo-2-fluoroacetonitrile (3).
Using lithium borohydride as the reducing agent and trimethylborate, the ester moiety of 1 can be converted into an alcohol to give 2-azido-2-bromo-2-fluoroethan-1-ol (4).[6] [7] It can also be changed into a tertiary amide in the presence of dimethylaluminium chloride, affording 2-azido-2-bromo-N,N-diethyl-2-fluoroacetamide (5) or be transformed in the corresponding acyl chloride, via a three-step procedure, to afford 2-azido-2-bromo-2-fluoroacetyl chloride (6).
-
References
- 1 Ami H, Uneyama K. Chem. Rev. 2009; 109: 2119 ; and references cited therein
- 2 Estevão MS, Duarte FJ. S, Fernandes E, Santos AG, Marques MM. B. Tetrahedron Lett. 2012; 53: 2132
- 3 O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
- 4 Hagmann WK. J. Med. Chem. 2008; 51: 4359
- 5 Data taken from the EUROPE Catalog, TCI Fine Chemicals 2012–2013.
- 6 David E, Couve-Bonnaire S, Jubault P, Pannecoucke X. Tetrahedron 2013; 69: 11039
- 7a Nakagawa M, Saito A, Soga A, Yamamoto N, Taguchi T. Tetrahedron Lett. 2005; 46: 5257
- 7b Piers E, Chong JM. J. Org. Chem. 1982; 82: 1604
- 8a Tarui A, Kawashima N, Sato K, Omote M, Miwa Y, Minami H, Ando A. Tetrahedron Lett. 2010; 51: 2000
- 8b Tarui A, Kawashima N, Sato K, Omote M, Ando A. Tetrahedron Lett. 2010; 51: 4246
- 9 Lemonnier G, Zoute L, Quirion J, Jubault P. Org. Lett. 2010; 12: 844
- 10 Zoute L, Lemonnier G, Nguyen TM, Quirion J, Jubault P. Tetrahedron Lett. 2011; 52: 2475
- 11 Ivashkin P, Couve-Bonnaire S, Jubault P, Pannecoucke X. Org. Lett. 2012; 14: 2270
- 12 Lemonnier G, Zoute L, Dupas G, Quirion J.-C, Jubault P. J. Org. Chem. 2009; 74: 4124
- 13 Saito A, Tojo M, Yanai H, Wada F, Nakagawa M, Okada M, Sato A, Okatani R, Taguchi T. J. Fluorine Chem. 2012; 133: 38