Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2014; 46(15): 2085-2092
DOI: 10.1055/s-0033-1341157
DOI: 10.1055/s-0033-1341157
paper
Ethoxide-Mediated Condensation of γ-tert-Butylallenoate and Aldehydes: Facile Stereoselective Synthesis of Conjugated Dienes and Enynes
Further Information
Publication History
Received: 12 March 2014
Accepted after revision: 18 March 2014
Publication Date:
10 April 2014 (online)
Abstract
The condensation reaction of a γ-tert-butylallenoate, ethyl 5,5-dimethylhexa-2,3-dienoate, and aldehydes in the presence of sodium ethoxide is described. A range of aldehydes readily reacts with γ-tert-butylallenoate and ethoxide providing a straightforward synthesis of 1,2,3,4-tetrasubstituted conjugated dienes in moderate to good yields and exclusive E,E selectivity. For some aldehydes, the condensation chemoselectively delivers conjugated enynes in good yields and exclusive E selectivity.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synthesis.
- Supporting Information
-
References
- 1 These authors contributed equally to this work.
- 2a Pereira AR, Cabezas JA. J. Org. Chem. 2005; 70: 2594
- 2b de Figueiredo RM, Berner R, Julis J, Liu T, Türp D, Christmann M. J. Org. Chem. 2007; 72: 640
- 3a Winkler JD. Chem. Rev. 1996; 96: 167
- 3b The Chemistry of Dienes and Polyenes . Vol. 1. Rappoport Z. John Wiley & Sons; Chichester: 1997
- 3c The Chemistry of Dienes and Polyenes . Vol. 2. Rappoport Z. John Wiley & Sons; Chichester: 2001
- 3d Fringuelli F, Taticchi A. Dienes in the Diels–Alder Reaction . Wiley; New York: 1990
- 4 Larock RC. Comprehensive Organic Transformations . VCH; Weinheim: 1989: 241
- 5a Maryanoff BE, Reitz AB. Chem. Rev. 1989; 89: 863
- 5b Blakemore PR. J. Chem. Soc., Perkin Trans. 1 2002; 2563
- 5c van Staden LF, Gravestock D, Ager DJ. Chem. Soc. Rev. 2002; 195
- 6a Trost BM, Toste FD, Pinkerton AB. Chem. Rev. 2001; 101: 2067
-
6b Aubert C, Buisine O, Malacria M. Chem. Rev. 2002; 102: 813
-
6c Diver ST, Giessert AJ. Chem. Rev. 2004; 104: 1317
- 6d Nicolaou KC, Bulger PG, Sarlah D. Angew. Chem. Int. Ed. 2005; 44: 4442
-
6e Hansen EC, Lee D. Acc. Chem. Res. 2006; 39: 509
- 7a Trost BM, Bridges AJ. J. Am. Chem. Soc. 1976; 98: 5017
- 7b Bloch R, Benecou C, Guibé-Jampel E. Tetrahedron Lett. 1985; 26: 1301
- 7c Trost BM, Sorum MT, Chan C, Rühter G. J. Am. Chem. Soc. 1997; 119: 698
- 7d Welker ME. Tetrahedron 2008; 64: 11529
- 8a Deng Y, Gu Z, Ma S. Chin. J. Org. Chem. 2006; 26: 1468
- 8b Clark DA, Kulkarni AA, Kalbarczyk K, Schertzer B, Diver ST. J. Am. Chem. Soc. 2006; 128: 15632
- 8c Deng Y, Yu Y, Ma S. J. Org. Chem. 2008; 73: 585
- 8d Paih JL, Bray CV.-L, Dérien S, Dixneuf PH. J. Am. Chem. Soc. 2010; 132: 7391
- 8e O’Connor JM, Chen M.-C, Holland RL, Rheingold AL. Organometallics 2011; 30: 369
- 8f Zhang X, Fu C, Ma S. Org. Lett. 2011; 13: 1920
- 8g Kazem Shiroodi R, Dudnik AS, Gevorgyan V. J. Am. Chem. Soc. 2012; 134: 6928
- 8h Moulin S, Zhang H, Raju S, Bruneau C, Derien S. Chem. Eur. J. 2013; 19: 3292
- 9 Cowen BJ, Miller SJ. Chem. Soc. Rev. 2009; 38: 3102
-
10a Ma S. Chem. Rev. 2005; 105: 2829
- 10b Lu X, Zhang C, Xu Z. Acc. Chem. Res. 2001; 34: 535
- 10c Methot JL, Roush WR. Adv. Synth. Catal. 2004; 346: 1035
- 10d Ye L.-W, Zhou J, Tang Y. Chem. Soc. Rev. 2008; 37: 1140
- 10e Marinetti A, Voituriez A. Synlett 2010; 174
- 10f Zhao Q.-Y, Lian Z, Wei Y, Shi M. Chem. Commun. 2012; 48: 1724
- 10g Xu S, He Z. RSC Adv. 2013; 3: 16885
- 10h Kwon O, Fan YC. Chem. Commun. 2013; 49: 1158
- 11a Jung ME, Zimmerman CN. J. Am. Chem. Soc. 1991; 113: 7813
- 11b Trost BM, Kazmaier U. J. Am. Chem. Soc. 1992; 114: 7933
- 11c A, J.-M; Lee PH. Bull. Korean Chem. Soc. 2009; 30: 471
- 11d Eom D, Kim SH, Lee PH. Bull. Korean Chem. Soc. 2010; 31: 645
- 11e Khong SN, Tran YS, Kwon O. Tetrahedron 2010; 66: 4760
- 11f Li J, Wang N, Li C, Jia X. Chem. Eur. J. 2012; 18: 9645
-
11g Chai G, Fu C, Ma S. Org. Lett. 2012; 14: 4058
- 11h Wu X, Na R, Liu H, Liu J, Wang M, Zhong J, Guo H. Tetrahedron Lett. 2012; 53: 342
- 11i He Z, Tang X, He Z. Phosphorus, Sulfur Silicon Relat. Elem. 2008; 183: 1518
- 11j Xu S, Zhou L, Zeng S, Ma R, Wang Z, He Z. Org. Lett. 2009; 11: 3498
- 11k Xu S, Zou W, Wu G, Song H, He Z. Org. Lett. 2010; 12: 3556
- 11l Ma R, Xu S, Tang X, Wu G, He Z. Tetrahedron 2011; 67: 1053
- 11m Xu S, Chen R, He Z. J. Org. Chem. 2011; 76: 7528
- 12a Deng Y, Jin X, Ma S. J. Org. Chem. 2007; 72: 5901
- 12b Deng Y, Jin X, Fu C, Ma S. Org. Lett. 2009; 11: 2169
- 13 Yang Y.-L, Wei Y, Xu Q, Shi M. Tetrahedron 2013; 69: 3593
- 14 Sabbasani VR, Mamidipalli P, Lu H, Xia Y, Lee D. Org. Lett. 2013; 15: 1552
- 15a Xu S, Zhou L, Ma R, Song H, He Z. Chem. Eur. J. 2009; 15: 8698
- 15b Xu S, Zhou L, Ma R, Song H, He Z. Org. Lett. 2010; 12: 544
- 15c Xu S, He Z. Sci. China Chem. 2010; 40: 856
- 15d Xu S, He Z. Chin. J. Org. Chem. 2012; 32: 1159
- 15e Tian J, He Z. Chem. Commun. 2013; 49: 2058
- 15f Qin Z, Ma R, Xu S, He Z. Tetrahedron 2013; 69: 10424
- 16 An alkoxide anion-catalyzed addition of γ-(trimethyl-silyl)allenoates to aldehydes for synthesis of carbinol allenoates was reported, see: Maity P, Lepore SD. J. Am. Chem. Soc. 2009; 131: 4196
- 17a Tsuboi S, Kuroda H, Takatsuka S, Fukawa T, Sakai T, Utaka M. J. Org. Chem. 1993; 58: 5952
- 17b Selig P, Turočkin A, Raven W. Adv. Synth. Catal. 2013; 355: 297
- 18 The carbon–carbon double-bond configuration of 6 was determined by 1H NMR and NOESY analysis. A mechanistic rationale for the formation of 6 is outlined in the Supporting Information.
- 19 Crystallographic data (excluding structure factors) for the 3a and 4b in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication nos. CCDC 955530 and CCDC 955531.
- 20 Yu X, Ren H, Xiao Y, Zhang J. Chem. Eur. J. 2008; 14: 8481
- 21a Zhang C, Lu X. Tetrahedron Lett. 1997; 38: 4831
- 21b Semmelhack MF, Tomesch JC, Czarny M, Boettger S. J. Org. Chem. 1978; 43: 1259
- 21c Ciganek E. J. Org. Chem. 1995; 60: 4635
- 21d Habib-Zahmani H, Hacini S, Bories C, Faure R, Rodriguez J. Synthesis 2005; 2151
- 21e Shi M, Dai L.-Z, Shi Y.-L, Zhao G.-L. Adv. Synth. Catal. 2006; 348: 967
-
21f Xu B, Hammond GB. Angew. Chem. Int. Ed. 2008; 47: 689
- 22 The propargyl anion intermediate 9 may also be generated by direct deprotonation on the γ-carbon of the allenoate 1a with sodium ethoxide, see ref. 17a.
- 23 Preliminary investigations on the temperature effect on the chemoselectivity indicated that a higher temperature could suppress the formation of enyne products to some degree. For the reaction of allenoate 1a and 4-nitrobenzaldehyde (2e) with sodium ethoxide in ethanol at 60 °C, none of the enyne 4a could be detected, and the diene 3e was generated in a modest 36% yield. In contrast, a lower temperature (–10 °C) resulted in a very similar ratio between 3e and 4a (23% and 5%, respectively) to that of r.t. (Table 2, entry 5), although the yields were lower.
- 24 Castellano S, Fiji HD. G, Kinderman SS, Watanabe M, de Leon P, Tamanoi F, Kwon O. J. Am. Chem. Soc. 2007; 129: 5843
For recent selected examples for diene synthesis, see:
For selected reviews, see:
For selected examples, see:
Analogous synthesis of enynes from allenoates and aldehydes was reported, see: