Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2014; 25(10): 1473-1477
DOI: 10.1055/s-0033-1341241
DOI: 10.1055/s-0033-1341241
letter
Synthesis of 3,3-Disubstituted 2-Aminoindolenines by Palladium-Catalyzed Allylic Amidination with Isocyanide
Further Information
Publication History
Received: 19 February 2014
Accepted after revision: 24 March 2014
Publication Date:
30 April 2014 (online)
Abstract
Synthesis of 3,3-disubstituted 2-aminoindolenines was achieved by palladium-catalyzed allylic amidination with an isocyanide. It was found that isocyanides are effective building blocks in palladium-catalyzed allylic functionalizations, analogous to carbon monoxide. This approach enables the direct construction of the indolenine ring along with the formation of a quaternary carbon and the introduction of an amino substituent in one step under mild conditions.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.
- Supporting Information
-
References and Notes
- 1a Dewick PM. Medicinal Natural Products: A Biosynthetic Approach. John Wiley and Sons; Chichester: 2009. 3rd ed. 311-420
- 1b Heterocyclic Scaffolds II: Reactions and Applications of Indole. In Topics in Heterocyclic Chemistry. Vol. 26. Gribble GW. Springer; Berlin: 2010
- 1c Eckermann R, Gaich T. Synthesis 2013; 45: 2813
- 1d Ishikura M, Abe T, Choshi T, Hibino S. Nat. Prod. Rep. 2013; 30: 694
- 2 Carlé JS, Christophersen C. J. Org. Chem. 1981; 46: 3440
- 3 Verbitski SM, Mayne CL, Davis RA, Concepcion GP, Ireland CM. J. Org. Chem. 2002; 67: 7124
- 4 Koyama N, Inoue Y, Sekine M, Hayakawa Y, Homma H, Ōmura S, Tomoda H. Org. Lett. 2008; 10: 5273
- 5a Kawasaki T, Shinada M, Ohzono M, Ogawa A, Terashima R, Sakamoto M. J. Org. Chem. 2008; 73: 5959
- 5b Lindel T, Bräuchle L, Golz G, Böhrer P. Org. Lett. 2007; 9: 283
- 5c Fuchs JR, Funk RL. Org. Lett. 2005; 7: 677
- 5d Zhang H, Hong L, Kang H, Wang R. J. Am. Chem. Soc. 2013; 135: 14098
- 5e Wu H, Xue F, Xiao X, Qin Y. J. Am. Chem. Soc. 2010; 132: 14052
- 5f Fuchs JR, Funk RL. J. Am. Chem. Soc. 2004; 126: 5068
- 5g Ishida T, Ikota H, Kurahashi K, Tsukano C, Takemoto Y. Angew. Chem. Int. Ed. 2013; 52: 10204
- 5h Wu M, Ma D. Angew. Chem. Int. Ed. 2013; 52: 9759
- 6a Tsukano C, Okuno M, Takemoto Y. Chem. Lett. 2013; 42: 753
- 6b Ishida T, Tsukano C, Takemoto Y. Chem. Lett. 2012; 41: 44
- 6c Hande SM, Nakajima M, Kamisaki H, Tsukano C, Takemoto Y. Org. Lett. 2011; 13: 1828
- 6d Yasui Y, Kamisaki H, Takemoto Y. Org. Lett. 2008; 10: 3303
- 6e Kobayashi Y, Kamisaki H, Yanada R, Takemoto Y. Org. Lett. 2006; 8: 2711
- 7a Vlaar T, Ruijter E, Maes BU. W, Orru RV. A. Angew. Chem. Int. Ed. 2013; 52: 7084
- 7b Qiu G, Ding Q, Wu J. Chem. Soc. Rev. 2013; 42: 5257
- 7c Lang S. Chem. Soc. Rev. 2013; 42: 4867
- 7d Tobisu M, Chatani N. Chem. Lett. 2011; 40: 330
- 7e Lygin AV, de Meijere A. Angew. Chem. Int. Ed. 2010; 49: 9094
- 8a Kobayashi K, Iitsuka D, Fukamachi S, Konishi H. Tetrahedron 2009; 65: 7523
- 8b Tokuyama H, Fukuyama T. Chem. Rec. 2002; 2: 37
- 8c Fukuyama T, Chen X, Peng G. J. Am. Chem. Soc. 1994; 116: 3127
- 8d Jones WD, Kosar WP. J. Am. Chem. Soc. 1986; 108: 5640
- 8e Ito Y, Kobayashi K, Seko N, Saegusa T. Bull. Chem. Soc. Jpn. 1984; 57: 73
- 8f Ito Y, Kobayashi K, Saegusa T. J. Am. Chem. Soc. 1977; 99: 3532
- 9a Estévez V, Baelen GV, Lentferink BH, Vlaar T, Janssen E, Maes BU. W, Orru RV. A, Ruijter E. ACS Catal. 2014; 4: 40
- 9b Liu B, Gao H, Yu Y, Wu W, Jiang H. J. Org. Chem. 2013; 78: 10319
- 9c Vlaar T, Cioc RC, Mampuys P, Maes BU. W, Orru RV. A, Ruijter E. Angew. Chem. Int. Ed. 2012; 51: 13058
- 9d Tyagi V, Khan S, Giri A, Gauniyal HM, Sridhar B, Chauhan PM. S. Org. Lett. 2012; 14: 3126
- 9e Wang Y, Zhu Q. Adv. Synth. Catal. 2012; 354: 1902
- 9f Qiu G, Liu G, Pu S, Wu J. Chem. Commun. 2012; 48: 2903
- 9g Baelen GV, Kuijer S, Rýček L, Sergeyev S, Janssen E, de Kanter FJ. J, Maes BU. W, Ruijter E, Orru RV. A. Chem. Eur. J. 2011; 17: 15039
- 9h Boissarie PJ, Hamilton ZE, Lang S, Murphy JA, Suckling CJ. Org. Lett. 2011; 13: 6256
- 9i Wang Y, Wang H, Peng J, Zhu Q. Org. Lett. 2011; 13: 4604
- 9j Miura T, Nishida Y, Morimoto M, Yamauchi M, Murakami M. Org. Lett. 2011; 13: 1429
- 9k Jiang H, Liu B, Li Y, Wang A, Huang H. Org. Lett. 2011; 13: 1028
- 9l Tobisu M, Imoto S, Ito S, Chatani N. J. Org. Chem. 2010; 75: 4835
- 9m Curran DP, Du W. Org. Lett. 2002; 4: 3215
- 9n Onitsuka K, Suzuki S, Takahashi S. Tetrahedron Lett. 2002; 43: 6197
- 9o Saluste CG, Whitby RJ, Furber M. Angew. Chem. Int. Ed. 2000; 39: 4156
- 10a Nanjo T, Tsukano C, Takemoto Y. Org. Lett. 2012; 14: 4270
- 10b Nanjo T, Yamamoto S, Tsukano C, Takemoto Y. Org. Lett. 2013; 15: 3754
- 11a Park S, Shintani R, Hayashi T. Chem. Lett. 2009; 38: 204
- 11b Kamijo S, Yamamoto Y. J. Am. Chem. Soc. 2002; 124: 11940
- 11c Kamijo S, Jin T, Yamamoto Y. J. Am. Chem. Soc. 2001; 123: 9453
- 11d Ohe K, Matsuda H, Ishihara T, Ogoshi S, Chatani N, Murai S. J. Org. Chem. 1993; 58: 1173
- 12 Substrates 1a and 1b were synthesized by Suzuki coupling of N-formyl-2-iodoaniline with vinyl boronic esters followed by formation of the carbonate or ester and then the isocyanide. See the Supporting Information for more detail.
- 13 General Procedure for the Synthesis of 3,3-Disubstituted 2-Aminoindolenines To a stirred solution of 1 (0.1 mmol), amine (0.2 mmol), and Et3N (0.028 mL, 0.201 mmol) in THF (2 mL) were added Pd(dba)2 (5.8 mg, 0.0101 mmol) and (2-furyl)3P (4.6 mg, 0.0198 mmol). After stirring for 12 h at r.t., the reaction mixture was diluted with toluene and extracted with 2 M aq HCl. The combined extracts were basified with 2 M aq NaOH and extracted with EtOAc. The resultant organic layers were washed with brine, dried over Na2SO4, and concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (hexane–EtOAc) to give 2.
- 14 Analytical Data for 2a A colorless block, which was recrystallized from Et2O: mp 83.0–86.0 °C. 1H NMR (500 MHz, CDCl3): δ = 7.16–7.12 (m, 2 H), 6.92 (d, 1 H, J = 7.2 Hz), 6.86 (ddd, 1 H, J 1 = J 2 = 6.6 Hz, J 3 = 1.7 Hz), 5.90 (dd, 1 H, J 1 = 17.5 Hz, J 2 = 10.6 Hz), 5.35 (d, 1 H, J = 17.5 Hz), 5.22 (d, 1 H, J = 10.6 Hz), 3.71–3.63 (m, 4 H), 1.67–1.58 (m, 9 H). 13C NMR (126 MHz, CDCl3): δ = 176.2, 154.7, 140.6, 138.9, 128.1, 121.2, 120.8, 115.7, 113.6, 55.6, 47.4, 26.0, 24.3, 20.7. IR (ATR): 2934, 1632, 1542, 1458, 1448 cm–1. MS–FAB: m/z = 241 [M + H]+. HRMS–FAB+: m/z calcd for C16H21N2 [M + H]+: 241.1705; found: 241.1708.
- 15 As previously reported on the synthesis of amidines using palladium catalysis and isocyanides,9g,h path A is also possible. In this case, the diastereoselectivity of 2m would be derived from a selective reaction of one enantiomer of racemic B and l-proline methyl ester (i.e., matched pair).
Recent reviews:
For recent examples, see:
For recent reviews on the transformation of isocyanides, see:
For selected examples of indole synthesis using phenyl isocyanide, see:
For selected examples of palladium-catalyzed isocyanide insertion, see: