Semin Musculoskelet Radiol 2013; 17(02): 137-144
DOI: 10.1055/s-0033-1343069
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Current Concepts in MRI of Focal and Diffuse Malignancy of Bone Marrow

Benjamin Matthew Howe
1   Department of Radiology, Mayo Clinic Rochester, Rochester, Minnesota
,
Geoffrey B. Johnson
1   Department of Radiology, Mayo Clinic Rochester, Rochester, Minnesota
2   Department of Immunology, Mayo Clinic Rochester, Rochester, Minnesota
,
Doris E. Wenger
1   Department of Radiology, Mayo Clinic Rochester, Rochester, Minnesota
3   Department of Orthopedic Surgery, Mayo Clinic Rochester, Rochester, Minnesota
› Author Affiliations
Further Information

Publication History

Publication Date:
14 May 2013 (online)

Abstract

Bone marrow is a ubiquitous component of musculoskeletal imaging studies. The ability to identify and characterize pathology accurately in the bone marrow can be challenging given the broad spectrum of imaging features of normal bone marrow. Knowledge regarding the ability to differentiate normal from abnormal marrow has been enhanced with MR imaging with numerous techniques available to aid in distinguishing benign from malignant lesions in the bone marrow. T1-weighted fast spin echo (FSE) and fluid-sensitive sequences, fat-saturated T2-weighted FSE, and short tau inversion recovery provide valuable tools for the evaluation of a focal bone marrow lesion. Gadolinium enhancement, chemical shift, diffusion-weighted, and MR spectroscopy imaging are additional tools available for focal bone marrow lesion evaluation. Whole-body MRI and fluorodeoxyglucose positron emission tomography-computed tomography have evolved to be useful studies for staging and monitoring of therapeutic response in whole-body imaging. The relative advantages and disadvantages of the whole-body techniques are reviewed for metastases, myeloma, and lymphoma.

 
  • References

  • 1 Vogler III JB, Murphy WA. Bone marrow imaging. Radiology 1988; 168 (3) 679-693
  • 2 Taccone A, Oddone M, Dell'Acqua AD, Occhi M, Ciccone MA. MRI “road-map” of normal age-related bone marrow. II. Thorax, pelvis and extremities. Pediatr Radiol 1995; 25 (8) 596-606
  • 3 Taccone A, Oddone M, Occhi M, Dell'Acqua AD, Ciccone MA. MRI “road-map” of normal age-related bone marrow. I. Cranial bone and spine. Pediatr Radiol 1995; 25 (8) 588-595
  • 4 McMenamin DS, Stuckey SL, Potgieter GJ. T1 hyperintense vertebral column melanoma metastases. AJNR Am J Neuroradiol 2007; 28 (9) 1817-1818
  • 5 Premkumar A, Marincola F, Taubenberger J, Chow C, Venzon D, Schwartzentruber D. Metastatic melanoma: correlation of MRI characteristics and histopathology. J Magn Reson Imaging 1996; 6 (1) 190-194
  • 6 Mirowitz SA, Apicella P, Reinus WR, Hammerman AM. MR imaging of bone marrow lesions: relative conspicuousness on T1-weighted, fat-suppressed T2-weighted, and STIR images. AJR Am J Roentgenol 1994; 162 (1) 215-221
  • 7 Nakatsu M, Hatabu H, Itoh H , et al. Comparison of short inversion time inversion recovery (STIR) and fat-saturated (chemsat) techniques for background fat intensity suppression in cervical and thoracic MR imaging. J Magn Reson Imaging 2000; 11 (1) 56-60
  • 8 Pui MH, Goh PS, Choo HF, Fok EC. Magnetic resonance imaging of musculoskeletal lesions: comparison of three fat-saturation pulse sequences. Australas Radiol 1997; 41 (2) 99-102
  • 9 Berquist TH. MRI of the Musculoskeletal System. 5th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2006
  • 10 Bloem JL. Dynamic gadolinium-enhanced MR imaging in bone marrow disorders. Radiology 2003; 227 (1) 303 ; author reply 304–305
  • 11 Mosher TJ. Diagnostic effectiveness of gadolinium-enhanced MR imaging in evaluation of abnormal bone marrow signal. Radiology 2002; 224 (2) 320-322
  • 12 Schmid MR, Hodler J, Vienne P, Binkert CA, Zanetti M. Bone marrow abnormalities of foot and ankle: STIR versus T1-weighted contrast-enhanced fat-suppressed spin-echo MR imaging. Radiology 2002; 224 (2) 463-469
  • 13 Van der Woude HJ, Egmont-Petersen M. Contrast-enhanced magnetic resonance imaging of bone marrow. Semin Musculoskelet Radiol 2001; 5 (1) 21-33
  • 14 Baur A, Stäbler A, Bartl R, Lamerz R, Scheidler J, Reiser M. MRI gadolinium enhancement of bone marrow: age-related changes in normals and in diffuse neoplastic infiltration. Skeletal Radiol 1997; 26 (7) 414-418
  • 15 Bollow M, Knauf W, Korfel A , et al. Initial experience with dynamic MR imaging in evaluation of normal bone marrow versus malignant bone marrow infiltrations in humans. J Magn Reson Imaging 1997; 7 (1) 241-250
  • 16 van Rijswijk CSP, Geirnaerdt MJA, Hogendoorn PCW , et al. Dynamic contrast-enhanced MR imaging in monitoring response to isolated limb perfusion in high-grade soft tissue sarcoma: initial results. Eur Radiol 2003; 13 (8) 1849-1858
  • 17 Cohen MD. MRI and the detection of bone marrow tumor. AJR Am J Roentgenol 2008; 190 (1) W75
  • 18 Northam M, de Campos ROP, Ramalho M , et al. Bone metastases: evaluation of acuity of lesions using dynamic gadolinium-chelate enhancement, preliminary results. J Magn Reson Imaging 2011; 34 (1) 120-127
  • 19 Zha Y, Li M, Yang J. Dynamic contrast enhanced magnetic resonance imaging of diffuse spinal bone marrow infiltration in patients with hematological malignancies. Korean J Radiol 2010; 11 (2) 187-194
  • 20 Rahmouni A, Montazel JL, Divine M , et al. Bone marrow with diffuse tumor infiltration in patients with lymphoproliferative diseases: dynamic gadolinium-enhanced MR imaging. Radiology 2003; 229 (3) 710-717
  • 21 Katsuya T, Inoue T, Ishizaka H, Aoki J, Endo K. Dynamic contrast-enhanced MR imaging of the water fraction of normal bone marrow and diffuse bone marrow disease. Radiat Med 2000; 18 (5) 291-297
  • 22 Moulopoulos LA, Maris TG, Papanikolaou N, Panagi G, Vlahos L, Dimopoulos MA. Detection of malignant bone marrow involvement with dynamic contrast-enhanced magnetic resonance imaging. Ann Oncol 2003; 14 (1) 152-158
  • 23 Zhang L, Mandel C, Yang ZY , et al. Tumor infiltration of bone marrow in patients with hematological malignancies: dynamic contrast-enhanced magnetic resonance imaging. Chin Med J (Engl) 2006; 119 (15) 1256-1262
  • 24 Chen BB, Hsu CY, Yu CW , et al. Dynamic contrast-enhanced MR imaging measurement of vertebral bone marrow perfusion may be indicator of outcome of acute myeloid leukemia patients in remission. Radiology 2011; 258 (3) 821-831
  • 25 Biffar A, Sourbron S, Schmidt G , et al. Measurement of perfusion and permeability from dynamic contrast-enhanced MRI in normal and pathological vertebral bone marrow. Magn Reson Med 2010; 64 (1) 115-124
  • 26 Griffith JF, Yeung DK, Antonio GE , et al. Vertebral marrow fat content and diffusion and perfusion indexes in women with varying bone density: MR evaluation. Radiology 2006; 241 (3) 831-838
  • 27 Montazel JL, Divine M, Lepage E, Kobeiter H, Breil S, Rahmouni A. Normal spinal bone marrow in adults: dynamic gadolinium-enhanced MR imaging. Radiology 2003; 229 (3) 703-709
  • 28 Wismer GL, Rosen BR, Buxton R, Stark DD, Brady TJ. Chemical shift imaging of bone marrow: preliminary experience. AJR Am J Roentgenol 1985; 145 (5) 1031-1037
  • 29 Disler DG, McCauley TR, Ratner LM, Kesack CD, Cooper JA. In-phase and out-of-phase MR imaging of bone marrow: prediction of neoplasia based on the detection of coexistent fat and water. AJR Am J Roentgenol 1997; 169 (5) 1439-1447
  • 30 Erly WK, Oh ES, Outwater EK. The utility of in-phase/opposed-phase imaging in differentiating malignancy from acute benign compression fractures of the spine. AJNR Am J Neuroradiol 2006; 27 (6) 1183-1188
  • 31 Baunin C, Schmidt G, Baumstarck K , et al. Value of diffusion-weighted images in differentiating mid-course responders to chemotherapy for osteosarcoma compared to the histological response: preliminary results. Skeletal Radiol 2012; 41 (9) 1141-1149
  • 32 Baur A, Stäbler A, Brüning R , et al. Diffusion-weighted MR imaging of bone marrow: differentiation of benign versus pathologic compression fractures. Radiology 1998; 207 (2) 349-356
  • 33 Balliu E, Vilanova JC, Peláez I , et al. Diagnostic value of apparent diffusion coefficients to differentiate benign from malignant vertebral bone marrow lesions. Eur J Radiol 2009; 69 (3) 560-566
  • 34 Baur A, Stäbler A, Arbogast S, Duerr HR, Bartl R, Reiser M. Acute osteoporotic and neoplastic vertebral compression fractures: fluid sign at MR imaging. Radiology 2002; 225 (3) 730-735
  • 35 Finelli DA. Diffusion-weighted imaging of acute vertebral compressions: specific diagnosis of benign versus malignant pathologic fractures. AJNR Am J Neuroradiol 2001; 22 (2) 241-242
  • 36 Yuh WT, Zachar CK, Barloon TJ, Sato Y, Sickels WJ, Hawes DR. Vertebral compression fractures: distinction between benign and malignant causes with MR imaging. Radiology 1989; 172 (1) 215-218
  • 37 Yeung DK, Wong SY, Griffith JF, Lau EM. Bone marrow diffusion in osteoporosis: evaluation with quantitative MR diffusion imaging. J Magn Reson Imaging 2004; 19 (2) 222-228
  • 38 Li X, Kuo D, Schafer AL , et al. Quantification of vertebral bone marrow fat content using 3.  Tesla MR spectroscopy: reproducibility, vertebral variation, and applications in osteoporosis. J Magn Reson Imaging 2011; 33 (4) 974-979
  • 39 Liu Y, Tang GY, Tang RB, Peng YF, Li W. Assessment of bone marrow changes in postmenopausal women with varying bone densities: magnetic resonance spectroscopy and diffusion magnetic resonance imaging. Chin Med J (Engl) 2010; 123 (12) 1524-1527
  • 40 Griffith JF, Yeung DK, Chow SK, Leung JC, Leung PC. Reproducibility of MR perfusion and (1)H spectroscopy of bone marrow. J Magn Reson Imaging 2009; 29 (6) 1438-1442
  • 41 Zhang J, Cheng K, Ding Y , et al. Study of single voxel (1)H MR spectroscopy of bone tumors: differentiation of benign from malignant tumors. Eur J Radiol 2011; (Dec) 12
  • 42 Hillner BE, Liu D, Coleman RE , et al. The National Oncologic PET Registry (NOPR): design and analysis plan. J Nucl Med 2007; 48 (11) 1901-1908
  • 43 Squillaci E, Manenti G, Mancino S , et al. Staging of colon cancer: whole-body MRI vs. whole-body PET-CT—initial clinical experience. Abdom Imaging 2008; 33 (6) 676-688
  • 44 Takenaka D, Ohno Y, Matsumoto K , et al. Detection of bone metastases in non-small cell lung cancer patients: comparison of whole-body diffusion-weighted imaging (DWI), whole-body MR imaging without and with DWI, whole-body FDG-PET/CT, and bone scintigraphy. J Magn Reson Imaging 2009; 30 (2) 298-308
  • 45 Antoch G, Vogt FM, Freudenberg LS , et al. Whole-body dual-modality PET/CT and whole-body MRI for tumor staging in oncology. JAMA 2003; 290 (24) 3199-3206
  • 46 Durie BG, Salmon SE. A clinical staging system for multiple myeloma. Correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival. Cancer 1975; 36 (3) 842-854
  • 47 Durie BG. The role of anatomic and functional staging in myeloma: description of Durie/Salmon plus staging system. Eur J Cancer 2006; 42 (11) 1539-1543
  • 48 Dimopoulos M, Terpos E, Comenzo RL , et al; IMWG. International myeloma working group consensus statement and guidelines regarding the current role of imaging techniques in the diagnosis and monitoring of multiple myeloma. Leukemia 2009; 23 (9) 1545-1556
  • 49 Greipp PR, San Miguel J, Durie BG , et al. International staging system for multiple myeloma. J Clin Oncol 2005; 23 (15) 3412-3420
  • 50 Baur-Melnyk A, Buhmann S, Dürr HR, Reiser M. Role of MRI for the diagnosis and prognosis of multiple myeloma. Eur J Radiol 2005; 55 (1) 56-63
  • 51 Fonti R, Salvatore B, Quarantelli M , et al. 18F-FDG PET/CT, 99mTc-MIBI, and MRI in evaluation of patients with multiple myeloma. J Nucl Med 2008; 49 (2) 195-200
  • 52 Jadvar H, Conti PS. Diagnostic utility of FDG PET in multiple myeloma. Skeletal Radiol 2002; 31 (12) 690-694
  • 53 Shortt CP, Gleeson TG, Breen KA , et al. Whole-Body MRI versus PET in assessment of multiple myeloma disease activity. AJR Am J Roentgenol 2009; 192 (4) 980-986
  • 54 Armitage JO. Staging non-Hodgkin lymphoma. CA Cancer J Clin 2005; 55 (6) 368-376
  • 55 Ribrag V, Vanel D, Leboulleux S , et al. Prospective study of bone marrow infiltration in aggressive lymphoma by three independent methods: whole-body MRI, PET/CT and bone marrow biopsy. Eur J Radiol 2008; 66 (2) 325-331
  • 56 Wu LM, Chen FY, Jiang XX, Gu HY, Yin Y, Xu JR. 18F-FDG PET, combined FDG-PET/CT and MRI for evaluation of bone marrow infiltration in staging of lymphoma: a systematic review and meta-analysis. Eur J Radiol 2012; 81 (2) 303-311
  • 57 Yasumoto M, Nonomura Y, Yoshimura R , et al. MR detection of iliac bone marrow involvement by malignant lymphoma with various MR sequences including diffusion-weighted echo-planar imaging. Skeletal Radiol 2002; 31 (5) 263-269
  • 58 van Ufford HM, Kwee TC, Beek FJ , et al. Newly diagnosed lymphoma: initial results with whole-body T1-weighted, STIR, and diffusion-weighted MRI compared with 18F-FDG PET/CT. AJR Am J Roentgenol 2011; 196 (3) 662-669