Klin Padiatr 2013; 225(03): 120-126
DOI: 10.1055/s-0033-1343483
Original Article
© Georg Thieme Verlag KG Stuttgart · New York

TK Inhibitor Treatment Disrupts Growth Hormone Axis: Clinical Observations in Children with CML and Experimental Data from a Juvenile Animal Model

Störung der Wachstumshormon-Achse durch TKI: Klinische Beobachtung bei Kindern mit CML und experimentelle Daten bei juvenilen Ratten
A. Ulmer*
1   Pediatric Hematology and Oncology, Department of Pediatrics, University Hospital “Carl Gustav Carus” , Dresden, Germany
,
J. Tabea Tauer*
1   Pediatric Hematology and Oncology, Department of Pediatrics, University Hospital “Carl Gustav Carus” , Dresden, Germany
,
I. Glauche
2   Medical Faculty “Carl Gustav Carus” Institute for Medical Informatics and Biometry, Dresden, Germany
,
R. Jung
3   Medical Faculty “Carl Gustav Carus” Experimental Center, Dresden, Germany
,
M. Suttorp
1   Pediatric Hematology and Oncology, Department of Pediatrics, University Hospital “Carl Gustav Carus” , Dresden, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
28 May 2013 (online)

Abstract

Background:

Long-term treatment of chronic myeloid leukemia (CML) with tyrosine kinase inhibitors (TKIs) exerts off-target effects on bone growth by either impaired growth hormone (GH) action or osseous modelling impairment.

Methods:

Body height and the GH-related parameters insulin-like growth factor 1 (IGF-1) and insulin-like growth factor-binding protein 3(IGFBP-3) were determined repetitively 3-monthly over 2 years in 21 pediatric CML-patients on standardized imatinib treatment. In an animal model 4-week-old male Wistar rats were exposed over 10 weeks to imatinib, dasatinib, or bosutinib at varying concentrations via the drinking water. Blood was collected at prepubertal age, pubertal age, and at adult age, respectively, and animals’ serum levels of IGFBP-3 were measured.

Results:

Independent from treatment duration patients exhibited IGF-1 and IGFBP-3 levels almost exclusively in the very low range when compared to age-matched references. No clear pattern of rising or falling IGF-1 and IGFBP-3 levels was observed. In rats, compared to controls, serum IGFBP-3 was significantly lowered for all TKIs tested, at all concentrations applied, and at all ages under investigation.

Conclusion:

Besides direct off-target effects on the growing skeleton, TKI treatment also results in lowered blood levels of IGF-1 and IGFBP-3.

A juvenile rat model predicts this side effect for dasatinib and bosutinib. Thus, growth and GH- related parameters should be monitored regularly in pediatric patients with CML on TKIs.

Zusammenfassung

Hintergrund:

Tyrosinkinase-Inhibitoren (TKIs) verursachen eine Störung des Knochenwachstums, welche entweder durch eine unzurei­chende Wirkung von Wachstumshormon (GH) oder eine Störung des Knochen-„Remodelling“ hervorgerufen wird.

Methoden:

Die Körperlänge und die Parameter Insulin-like growth factor 1 (IGF-1) und Insulin-like growth factor-binding protein 3 (IGFBP-3) wurden über 2 Jahre wiederholt bei 21 pädiatrischen Patienten mit CML bestimmt, die stan­dardisiert mit Imatinib behandelt wurden. Im Tiermodell erhielten 4 Wochen alte Wistar Ratten in unterschiedlichen Konzentrationen mit dem Trinkwasser über 10 Wochen Imatinib, Dasatinib oder Bosutinib. Im präpubertären, pubertären und Erwachsenenalter wurden IGFBP-3 bestimmt.

Resultate:

Unabhängig von der Therapiedauer fanden sich im Vergleich zu altersbezogenen Kontrollen bei den Patienten IGF-1 und IGFBP-3 Serumspiegel durchweg im sehr niedrigen unteren Normalbereich. Im Tierversuch fanden sich im Vergleich zu den Kontrolltieren bei den exponierten Ratten die IGFBP-3-Serumspiegel signifikant erniedrigt.

Schlussfolgerungen:

Neben ungerichteten Effekten am wachsenden Skelett verursachen TKIs auch eine Absenkung der Serumspiegel von IGF-1 und IGFBP-3. Ein juveniles Rattenmodell präjudiziert diese Nebenwirkung für Dasatinib und Bosutinib. Aus diesem Grund sind das Längenwachstum und GH-assoziierte Parameter bei Kindern mit CML unter TKI-Behandlung zu überwachen.

*

* Both authors contributed equally.


 
  • References

  • 1 Anderson LL, Jeftinija S, Scanes CG. Growth hormone secretion: molecular and cellular mechanisms and in vivo approaches. Exp Biol Med (Maywood) 2004; 229: 291-302
  • 2 Bansal HD, Shava U, Varma N et al. Imatinib Has Adverse Effect on Growth in Children With Chronic Myeloid Leukemia. Pediatr Blood Cancer 2012; 59: 481-484
  • 3 Berman E, Nicolaides M, Maki R et al. Altered bone and mineral metabolism in patients receiving imatinib mesylate. N Engl J Med 2006; 354: 2006-2013
  • 4 Boquete HR, Sobrado PG, Fideleff HL et al. Evaluation of diagnostic accuracy of insulin-like growth factor (IGF)-I and IGF-binding protein-3 in growth hormone-deficient children and adults using ROC plot analysis. J Clin Endocrinol Metab 2003; 10: 4702-4708
  • 5 Brooks AJ, Waters MJ. The growth hormone receptor: Mechanism of activation and clinical implications. Nat Rev Endocrinol 2010; 6: 515-525
  • 6 Champagne MA, Fu CH, Chang M et al. Higher dose imatinib for children with de novo chronic phase chronic myelogenous leukemia: a report from the Children’s Oncology Group. Pediatr Blood Cancer 2011; 57: 56-62
  • 7 Deininger MW, Druker BJ. Specific targeted therapy of chronic myelogenous leukemia with imatinib mesylate. Pharmacol Rev 2003; 55: 401-423
  • 8 Druker BJ, Guilhot F, O’Brien SG et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 2006; 355: 2408-2417
  • 9 Growth Hormone Research Society. Consensus guidelines for the diagnosis and treatment of growth hormone (GH) deficiency in childhood and adolescence: summary statement of the GH Research Society. J Clin Endocrinol Metab 2000; 85: 3990-3993
  • 10 Grunewald TGP, Greulich N, Kontny U et al. Targeted Therapeutics in Treatment of Children and Young Adults with Solid Tumors: an Expert Survey and Review of the Literature. Klin Padiatr 2012; 224: 124-131
  • 11 Hobernicht SL, Schweiger B, Zeitler P et al. Aquired growth hormone deficiency in a girl with chronic myelogenous leukemia treated with tyrosine kinase inhibitor therapy. Pediatr Blood Cancer 2011; 56: 671-673
  • 12 Id Boufker H, Lagneaux L, Najar M et al. The Src inhibitor dasatinib accelerates the differentiation of human bone marrow-derived mesenchymal stromal cells into osteoblasts. BMC Cancer 2010; 10: 298
  • 13 Jaeger BAS, Tauer JT, Ulmer A et al. Changes in bone metabolic parameters in children with chronic myeloid leukemia on imatinib treatment. Med Sci Monoitor 2012; 18: 721-728
  • 14 Kebapcilar L, Bilgir O, Alacacioglu I et al. Does imatinib mesylate therapy cause growth hormone deficiency?. Med Princ Pract 2009; 18: 360-363
  • 15 Keller A, Bierbach U, Mieke J et al. Ergebnisse einer unizentrischen endokrinologischen Nachsorge onkologischer Patienten im Kindes- und Adoleszentenalter. Klin Padiatr 2007; 219: 333-338
  • 16 Kimoto T, Inoue M, Kawa K. Growth deceleration in a girl treated with imatinib. Int J Hematol 2009; 89: 251-252
  • 17 Mariani S, Giona F, Basciani S et al. Low bone density and decreased inhibin-B/FSH ratio in a boy treated with imatinib during puberty. Lancet 2008; 372: 111-112
  • 18 Millot F, Baruchel A, Guilhot J et al. Imatinib is efficient but has a negative impact on growth in children with previously untreated chronic myelogenous leukaemia (CML) in early chronic phase (CP): results of the French National Phase IV Trial. Blood 2009; 110: 863
  • 19 Millot F, Baruchel A, Guilhot J et al. Imatinib is effective in children with previously untreated chronic myelogenous leukemia in early chronic phase: Results of the French national phase IV trial. J Clin Oncol 2011; 29: 2827-2832
  • 20 Mignozzi M, Picca S. Chronic myelogenous leukemia following kidney transplantation in a pediatric patient. Pediatr Nephrol 2001; 16: 852-853
  • 21 Molitch ME, Clemmons DR, Malozowski S et al. Evaluation and treatment of adult growth hormone deficiency: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 2006; 91: 1621-1634
  • 22 Narayanan KR, Bansal D, Walia R et al. Growth failure in children with chronic myeloid leukemia receiving imatinib is due to disruption of GH/IGF-1 axis. Pediatr Blood Cancer 2013; DOI: 10.1002/pbc.24397. [Epub ahead of print]
  • 23 Oliveira MR, Ohnuma L, Bendit I et al. Interferon-alpha therapy increases type I insulin-like growth factor receptors expression on lymphoid cells from patients with chronic myelogenous leukemia. Leuk Res 2001; 25: 711-717
  • 24 O’Sullivan S, Lin JM, Watson M et al. The skeletal effects of the tyrosine kinase inhibitor nilotinib. Bone 2011 49: 281-289
  • 25 Pastural E, Takahashi N, Dong WF et al. RIZ1 repression is associated with insulin-like growth factor-1 signaling activation in chronic myeloid leukemia cell lines. Oncogene 2007; 26: 1586-1594
  • 26 Personal communication: in-house reference values; Institute of Clinical Chemistry and Laboratory Medicine, University Hospital, Dresden
  • 27 Quintas-Cardama A, Kantarjian H, Cortes J. Flying under the radar: the new wave of BCR-ABL inhibitors. Nat Rev Drug Discov 2007; 6: 834-848
  • 28 Rastogi MV, Stork L, Druker B et al. Imatinib mesylate causes growth deceleration in pediatric patients with chronic myelogenous leukemia. Pediatr Blood Cancer 2012; 59: 840-845
  • 29 Remsing Rix LL, Rix U, Colinge J et al. Global target profile of the kinase inhibitor bosutinib in primary chronic myeloid leukemia cells. Leukemia 2009; 23: 477-485
  • 30 Rosenfeld RG, Belgorosky A, Camacho-Hubner C et al. Defects in growth hormone receptor signalling. Trends Endocrinol Metab 2007; 18: 134-141
  • 31 Schmid H, Jaeger BA, Lohse J et al. Longitudinal growth retardation in a prepubertal girl with chronic myeloid leukemia on long-term treatment with imatinib. Haematologica 2009; 94: 1171-1179
  • 32 Shima H, Tokuyama M, Tanizawa A et al. Distinct Impact of Imatinib on Growth at Prepubertal and Pubertal Ages of Children with Chronic Myeloid Leukemia. J Pediatr 2011; 159: 676-681
  • 33 Sorensen P. Tyrosine Kinase Networks in Pediatric Cancer. Klin Padiatr 2011; 223: 45-A2
  • 34 Suttorp M, Millot F. Treatment of pediatric chronic myeloid leukemia in the year 2010: use of tyrosine kinase inhibitors and stem cell transplantation. Hematology Am Soc Hematol Educ Progr 2010; 368-376
  • 35 Suttorp M, Yaniv I, Schultz KR. Controversies in the Treatment of CML in Children and Adolescents: TKIs versus BMT?. Biol Blood Marrow Transplant 2011; S115-S122
  • 36 Tauer JT, Hofbauer LC, König S et al. Side Effects on the Skeletal System Exerted by Continuous and by Interval Treatment with Tyrosine Kinase Inhibitors in An Animal Model of Juvenile Rodents. Blood 2011; 118 -A1597
  • 37 Tauer JT, Hofbauer LC, König S et al. Non-selective side effects of non-receptor tyrosine kinase inhibitors (TKI). Klin Padiatr 2011; 223 - A2
  • 38 Tauer JT, Ulmer A, Hofbauer LC et al. Dasatinib treatment causes alterations in bone metabolism in a juvenile rodent model. Haematologica 2012; 97 (Suppl. 01) 67 -A1256
  • 39 Tauer JT, Hofbauer LC, Jung R et al. Impact of continuous release of the tyrosine kinase inhibitor bosutinib via micro-osmotic pump on bone growth in juvenile rats. Med Sci Monit 2013; submitted
  • 40 Tibullo D, Barbagallo I, Giallongo C et al. Effects of second-generation tyrosine kinase inhibitors towards osteogenic differentiation of human mesenchymal cells of healthy donors. Hematol Oncol 2012; 30: 27-33
  • 41 Ulmer A, Tauer JT, Suttorp M. Influence of tyrosine kinase inhibitors (TKIs) on endocrinological parameters. Klin Padiatr 2012; 224 - A4
  • 42 Vandyke K, Fitter S, Dewar A et al. Dysregulation of bone remodeling by imatinib mesylate. Blood 2010; 115: 766-774
  • 43 Vandyke K, Dewar AL, Diamond P et al. The tyrosine kinase inhibitor dasatinib dysregulates bone remodeling through inhibition of osteoclasts in vivo. J Bone Miner Res 2010; 25: 1759-1770
  • 44 Zadik Z, Estrov Z, Karov Y et al. The effect of growth hormone and IGF-I on clonogenic growth of hematopoietic cells in leukemic patients during active disease and during remission – a preliminary report. J Pediatr Endocrinol 1993; 6: 79-83