Intensivmedizin up2date 2013; 09(03): 185-204
DOI: 10.1055/s-0033-1344438
Allgemeine Prinzipien der Intensivmedizin
© Georg Thieme Verlag KG Stuttgart · New York

Inhalative Anästhetika in der Intensivmedizin

Martin Bellgardt
,
Thomas Weber
,
Matthias Frommer
,
Andreas Meiser
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
31. Juli 2013 (online)

Kernaussagen
  • Die Einführung der inhalativen Anästhetika auf der Intensivstation eröffnet eine interessante, weitere Möglichkeit der Analgosedierung.

  • Bislang belegen 12 randomisierte, kontrollierte Studien die Durchführbarkeit, Effektivität und Sicherheit der inhalativen Sedierung.

  • Dass volatile Anästhetika durch Konditionierung eine Organprotektion bieten, ist durch viele Studien belegt.

  • Ob der Einsatz der inhalativen Sedierung auch einen positiven Effekt auf das Outcome hat, müssen entsprechende Studien noch zeigen.

  • Eine Sedierung mit volatilen Anästhetika ermöglicht durch kurze Aufwachzeiten eine umgehende neurologische Beurteilbarkeit der Patienten und eine vereinfachte Entwöhnung von der Beatmung.

  • Seit 2010 wird die inhalative Sedierung mit volatilen Anästhetika in der S3-Leitlinie „Sedierung, Analgesie und Delirmanagement in der Intensivmedizin“ als Alternative zur i. v. Sedierung empfohlen.

 
  • Literatur

  • 1 Gottschalk A, Van Aken H, Zenz M et al. Is anesthesia dangerous?. Dtsch Arztebl Int 2011; 108: 469-474
  • 2 Boles JM, Bion J, Connors A et al. Weaning from mechanical ventilation. Eur Respir J 2007; 29: 1033-1056
  • 3 Martin J, Heymann A, Basell K et al. Evidence and consensus-based German guidelines for the management of analgesia, sedation and delirium in intensive care – short version. Ger Med Sci 2010; 8 Doc02
  • 4 Gehlbach BK, Kress JP. Sedation in the intensive care unit. Curr Opin Crit Care 2002; 8: 290-298
  • 5 Kong KL, Willatts SM, Prys-Roberts C. Isoflurane compared with midazolam for sedation in the intensive care unit. BMJ 1989; 298: 1277-1280
  • 6 Spencer EM, Willatts SM. Isoflurane for prolonged sedation in the intensive care unit; efficacy and safety. Intensive Care Med 1992; 18: 415-421
  • 7 Shehabi Y, Bellomo R, Reade MC et al. Early intensive care sedation predicts long-term mortality in ventilated critically ill patients. Am J Respir Crit Care Med 2012; 186: 724-731
  • 8 Meiser A, Bellgardt M, Belda JF et al. Technical performance and reflection capacity of the Anaesthetic Conserving Device – a bench study with isoflurane and sevoflurane. J Clin Monit Comput 2009; 23: 11-19
  • 9 Sackey PV, Martling CR, Nise G et al. Ambient isoflurane pollution and isoflurane consumption during intensive care unit sedation with the Anesthetic Conserving Device. Crit Care Med 2005; 33: 585-590
  • 10 Bailey JM. Context-sensitive half-times and other decrement times of inhaled anesthetics. Anesth Analg 1997; 85: 681-686
  • 11 Njoku D, Laster MJ, Gong DH et al. Biotransformation of halothane, enflurane, isoflurane, and desflurane to trifluoroacetylated liver proteins: association between protein acylation and hepatic injury. Anesthesia and Analgesia 1997; 84: 173-178
  • 12 Martin JL. Hepatotoxicity after Desflurane Anesthesia. Anesthesiology 1995; 83: 1125-1129
  • 13 Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 1986; 74: 1124-1136
  • 14 Schipke JD, Kerendi F, Gams E et al. Postconditioning: a brief review. Herz 2006; 31: 600-606
  • 15 Kersten JR, Schmeling TJ, Pagel PS et al. Isoflurane mimics ischemic preconditioning via activation of K(ATP) channels: reduction of myocardial infarct size with an acute memory phase. Anesthesiology 1997; 87: 361-370
  • 16 Schlack W, Hollmann M, Stunneck J et al. Effect of halothane on myocardial reoxygenation injury in the isolated rat heart. Br J Anaesth 1996; 76: 860-867
  • 17 Bein B, Meybohm P. Organ protection by conditioning. Anasthesiol Intensivmed Notfallmed Schmerzther 2010; 45: 254-261
  • 18 Belhomme D, Peynet J, Louzy M et al. Evidence for preconditioning by isoflurane in coronary artery bypass graft surgery. Circulation 1999; 100: II340-344
  • 19 De Hert SG, ten Broecke PW, Mertens E et al. Sevoflurane but not propofol preserves myocardial function in coronary surgery patients. Anesthesiology 2002; 97: 42-49
  • 20 De Hert SG, Van der Linden PJ, Cromheecke S et al. Cardioprotective properties of sevoflurane in patients undergoing coronary surgery with cardiopulmonary bypass are related to the modalities of its administration. Anesthesiology 2004; 101: 299-310
  • 21 Steurer MP, Steurer MA, Baulig W et al. Late pharmacologic conditioning with volatile anesthetics after cardiac surgery. Crit Care 2012; 16: R191
  • 22 Hellström J, Öwall A, Bergström J et al. Cardiac outcome after sevoflurane versus propofol sedation following coronary bypass surgery: a pilot study. Acta Anaesthesiol Scand 2011; 55: 460-470
  • 23 Dembinski R. Entwöhnung von der Beatmung. Intensivmed up2date 2012; 8: 9-20
  • 24 Belda JF, Soro M, Badenes R et al. The predictive performance of a pharmacokinetic model for manually adjusted infusion of liquid sevofluorane for use with the Anesthetic-Conserving Device (AnaConDa): a clinical study. Anesth Analg 2008; 106: 1207-1214
  • 25 Sackey PV, Martling CR, Radell PJ. Three cases of PICU sedation with isoflurane delivered by the 'AnaConDa'. Paediatr Anaesth 2005; 15: 879-885
  • 26 Nickel EA, Benken I, Bartels U et al. AnaConDa als Ultima-Ratio-Therapie Fallbericht einer chronisch obstruktiven Lungenerkrankung. Anaesthesist 2007; 56: 587-591
  • 27 Jung C, Granados M, Marsol P et al. Use of sevoflurane sedation by the AnaConDa device as an adjunct to extubation in a pediatric burn patient. Burns 2008; 34: 136-138
  • 28 Levine S, Nguyen T, Taylor N et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med 2008; 358: 1327-1335
  • 29 Ornico SR, Lobo SM, Sanches HS et al. Noninvasive ventilation immediately after extubation improves weaning outcome after acute respiratory failure: a randomized controlled trial. Crit Care 2013; 17: R39
  • 30 Villa F, Iacca C, Molinari AF et al. Inhalation versus endovenous sedation in subarachnoid hemorrhage patients effects on regional cerebral blood flow. Crit Care Med 2012; 40: 2797-2804
  • 31 Bösel J, Purrucker JC, Nowak F et al. Volatile isoflurane sedation in cerebrovascular intensive care patients using AnaConDa®: effects on cerebral oxygenation, circulation, and pressure. Intensive Care Med 2012; 38: 1955-1964
  • 32 Mesnil M, Capdevila X, Bringuier S et al. Long-term sedation in intensive care unit: a randomized comparison between inhaled sevoflurane and intravenous propofol or midazolam. Intensive Care Med 2011; 37: 933-941
  • 33 Röhm KD, Wolf MW, Schollhorn T et al. Short-term sevoflurane sedation using the Anaesthetic Conserving Device after cardiothoracic surgery. Intensive Care Med 2008; 34: 1683-1689
  • 34 Hanafy M. Clinical evaluation of inhalation sedation following coronary artery bypass grafting. Eg J Anaesth 2005; 21: 237-242
  • 35 Sackey PV, Martling CR, Granath F et al. Prolonged isoflurane sedation of intensive care unit patients with the Anesthetic Conserving Device. Crit Care Med 2004; 32: 2241-2246
  • 36 Meiser A, Sirtl C, Bellgardt M et al. Desflurane compared with propofol for postoperative sedation in the intensive care unit. Br J Anaesth 2003; 90: 273-280
  • 37 Bedi A, Murray JM, Dingley J et al. Use of xenon as a sedative for patients receiving critical care. Crit Care Med 2003; 31: 2470-2477
  • 38 Sturesson LW, Malmkvist G, Bodelsson M et al. Carbon dioxide rebreathing with the anaesthetic conserving device, AnaConDa. Br J Anaesth 2012; 109: 279-283