Neuroradiologie Scan 2014; 04(01): 45-59
DOI: 10.1055/s-0033-1344646
Fortbildung
© Georg Thieme Verlag KG Stuttgart · New York

Sequenzspezifische MR-Bildgebungsbefunde als Hilfsmittel zur Datierung des ischämischen Schlaganfalls[1]

Sequence-specific MR imaging findings that are useful in dating ischemic stroke
Laura M. Allen
,
Anton N. Hasso
,
Jason Handwerker
,
Hamed Farid
Further Information

Publication History

Publication Date:
07 January 2014 (online)

Zusammenfassung

Nach einem ischämischen Schlaganfall kommen Patienten zu unterschiedlichen Zeitpunkten ins Krankenhaus. Viele werden erst Wochen nach Auftreten von neurologischen Ausfallerscheinungen vorstellig. Dies ist oft bei älteren Patienten und Patienten in Pflegeheimen der Fall. Die Altersbestimmung eines ischämischen Schlaganfalls bietet Patienten, deren Familien und dem medizinischen Team hilfreiche klinische Informationen. Häufig wird keine Perfusionsbildgebung durchgeführt; dann können die Befunde der pulssequenzspezifischen Magnetresonanzbildgebung dazu beitragen, das Alter des Infarkts zu bestimmen. Die beim Apparent-Diffusion-Coefficient-Mapping, in diffusionsgewichteten und in Fluid-attenuated-Inversion-Recovery-Sequenzen sowie in der nativen und kontrastmittelverstärkten T1-gewichteten und der T2-gewichteten Gradientenecho- und suszeptibilitätsgewichteten Magnetresonanzbildgebung beobachteten Befunde können die Bestimmung des relativen Alters eines Hirninfarkts unterstützen. Schlaganfälle lassen sich in folgende Gruppen einteilen und datieren: früh hyperakut, spät hyperakut, akut, subakut oder chronisch. Jüngere Daten lassen darauf schließen, dass ein weniger als 6 h zurückliegender Zeitpunkt des Schlaganfalls bei vielen Patienten mit Diffusionseinschränkungen und keinen Veränderungen auf Fluid-attenuated-Inversion-Recovery-Aufnahmen wahrscheinlicher als zunächst angenommen ist. Das Zeitfenster für die intravenöse Verabreichung eines Gewebeplasminogenaktivators beträgt derzeit 4,5 h ab dem letzten Beobachtungszeitpunkt vor Beginn der ersten Symptome. Bei Infarkten im vorderen Stromgebiet beträgt das Zeitfenster für die intraarterielle Verabreichung des Gewebeplasminogenaktivators 6 h ab dem letzten Beobachtungszeitpunkt vor Beginn der ersten Symptome. Aus diesem Grund ist die Bestimmung des genauen Zeitpunkts bei Patienten mit ischämischem Schlaganfall wichtig.

Abstract

Patients may present to the hospital at various times after an ischemic stroke. Many present weeks after a neurologic deficit has occurred, as is often the case with elderly patients and those in a nursing home. The ability to determine the age of an ischemic stroke provides useful clinical information for the patient, his or her family, and the medical team. Many times, perfusion imaging is not performed, and pulse sequence-specific magnetic resonance (MR) imaging findings may help determine the age of the infarct. The findings seen at apparent diffusion coefficient mapping and diffusion-weighted, fluid-attenuated inversion recovery (FLAIR) and unenhanced and contrast material-enhanced T1 – and T2-weighted gradient-echo and susceptibility-weighted MR imaging may help determine the relative age of a cerebral infarct. Strokes may be classified and dated as early hyperacute, late hyperacute, acute, subacute, or chronic. Recent data indicate that in many patients with restricted diffusion and no change on FLAIR images, it is more likely than was initially thought that the stroke is less than 6 hours old. The time window to administer intravenous tissue plasminogen activator is currently 4.5 hours from the time when the patient was last seen to be normal, and for anterior circulation strokes, the time window for administering intraarterial tissue plasminogen activator is 6 hours from when the patient was last seen to be normal. For this reason, accurate dating is important in patients with ischemic stroke.

1 © 2012 The Radiological Society of North America. All rights reserved. Originally puplished in English in RadioGraphics 2012; 32: 1285 – 1297. Online published in 10.1148/rg.325115760. Translated and reprinted with permission of RSNA. RSNA is not responsible for any inaccuracy or error arising from the translation from English to German.


 
  • Literatur

  • 1 Mackey J, Kleindorfer D, Sucharew H et al. Population-based study of wake-up strokes. Neurology 2011; 76: 1662-1667
  • 2 Lansberg MG, Thijs VN, O’Brien MW et al. Evolution of apparent diffusion coefficient, diffusion-weighted, and T2-weighted signal intensity of acute stroke. AJNR Am J Neuroradiol 2001; 22: 637-644
  • 3 Grossman RI, Yousem DM. Neuroradiology: the requisites. 2nd. ed. Philadelphia, Pa: Mosby; 2003: 183-196 , 217
  • 4 Radaideh M, Devine C, Schomer D et al. Correlating the basic chronological pathophysiologic neuronal changes in response to ischemia with multisequence MRI imaging. Neurographics 2002; 2 Article 1
  • 5 Sunshine JL, Bambakidis N, Tarr RW et al. Benefits of perfusion MR imaging relative to diffusion MR imaging in the diagnosis and treatment of hyperacute stroke. AJNR Am J Neuroradiol 2001; 22: 915-921
  • 6 Lövblad KO, Laubach HJ, Baird AE et al. Clinical experience with diffusion-weighted MR in patients with acute stroke. AJNR Am J Neuroradiol 1998; 19: 1061-1066
  • 7 Davis SM, Donnan GA. 4.5 hours: the new time window for tissue plasminogen activator in stroke. Stroke 2009; 40: 2266-2267
  • 8 Sylaja PN, Coutts SB, Krol A. VISION Study Group et al. When to expect negative diffusion-weighted images in stroke and transient ischemic attack. Stroke 2008; 39: 1898-1900
  • 9 Khatri R, Leach J, Flaherty ML. False-negative diffusion-weighted imaging with lateral medullary infarction. Neurology 2006; 67: E19
  • 10 Wang PY, Barker PB, Wityk RJ et al. Diffusion-negative stroke: a report of two cases. AJNR Am J Neuroradiol 1999; 20 : 1876-1880
  • 11 Oppenheim C, Stanescu R, Dormont D et al. False-negative diffusion-weighted MR findings in acute ischemic stroke. AJNR Am J Neuroradiol 2000; 21: 1434-1440
  • 12 Ishikawa T, Yuasa N, Otomo T et al. False-negative diffusion-weighted imaging findings in acute stroke. Jpn J Stroke 2006; 28 : 280-285
  • 13 Copen WA, Schwamm LH, González RG et al. Ischemic stroke: effects of etiology and patient age on the time course of the core apparent diffusion coefficient. Radiology 2001; 221: 27-34
  • 14 Gauvrit JY, Leclerc X, Girot M et al. Fluid-attenuated inversion recovery (FLAIR) sequences for the assessment of acute stroke: inter observer and inter technique reproducibility. J Neurol 2006; 253: 631-635
  • 15 Perkins CJ, Kahya E, Roque CT et al. Fluid-attenuated inversion recovery and diffusion- and perfusion-weighted MRI abnormalities in 117 consecutive patients with stroke symptoms. Stroke 2001; 32 : 2774-2781
  • 16 Oppenheim C, Logak M, Dormont D et al. Diagnosis of acute ischaemic stroke with fluid-attenuated inversion recovery and diffusion-weighted sequences. Neuroradiology 2000; 42 : 602-607
  • 17 Aoki J, Kimura K, Iguchi Y et al. FLAIR can estimate the onset time in acute ischemic stroke patients. J Neurol Sci 2010; 293 : 39-44
  • 18 Thomalla G, Rossbach P, Rosenkranz M et al. Negative fluid-attenuated inversion recovery imaging identifies acute ischemic stroke at 3 hours or less. Ann Neurol 2009; 65: 724-732
  • 19 Yuh WT, Crain MR, Loes DJ et al. MR imaging of cerebral ischemia: findings in the first 24 hours. AJNR Am J Neuroradiol 1991; 12 : 621-629
  • 20 Pereira AC, Doyle VL, Clifton A et al. The transient disappearance of cerebral infarction on T2 weighted MRI. Clin Radiol 2000; 55: 725-727
  • 21 O’Brien P, Sellar RJ, Wardlaw JM. Fogging on T2-weighted MR after acute ischaemic stroke: How often might this occur and what are the implications?. Neuroradiology 2004; 46: 635-641
  • 22 Elster AD, Moody DM. Early cerebral infarction: gadopentetate dimeglumine enhancement. Radiology 1990; 177 : 627-632
  • 23 Essig M, von Kummer R, Egelhof T et al. Vascular MR contrast enhancement in cerebrovascular disease. AJNR Am J Neuroradiol 1996; 17: 887-894
  • 24 Crain MR, Yuh WT, Greene GM et al. Cerebral ischemia: evaluation with contrast-enhanced MR imaging. AJNR Am J Neuroradiol 1991; 12 : 631-639
  • 25 Mueller DP, Yuh WT, Fisher DJ et al. Arterial enhancement in acute cerebral ischemia: clinical and angiographic correlation. AJNR Am J Neuroradiol 1993; 14: 661-668
  • 26 Bakshi R, Kinkel WR, Bates VE et al. The cerebral intravascular enhancement sign is not specific: a contrast-enhanced MRI study. Neuroradiology 1999; 41: 80-85
  • 27 Karonen JO, Partanen PL, Vanninen RL et al. Evolution of MR contrast enhancement patterns during the first week after acute ischemic stroke. AJNR Am J Neuroradiol 2001; 22: 103-111
  • 28 Yamada N, Imakita S, Sakuma T. Value of diffusion-weighted imaging and apparent diffusion coefficient in recent cerebral infarctions: a correlative study with contrast-enhanced T1-weighted imaging. AJNR Am J Neuroradiol 1999; 20: 193-198
  • 29 Wardlaw JM, Doubal F, Armitage P et al. Lacunar stroke is associated with diffuse blood-brain barrier dysfunction. Ann Neurol 2009; 65: 194-202
  • 30 Garcia JH, Lassen NA, Weiller C et al. Ischemic stroke and incomplete infarction. Stroke 1996; 27: 761-765
  • 31 Smirniotopoulos JG, Murphy FM, Rushing EJ et al. Patterns of contrast enhancement in the brain and meninges. RadioGraphics 2007; 27: 525-551
  • 32 Kim EY, Na DG, Kim SS et al. Prediction of hemorrhagic transformation in acute ischemic stroke: role of diffusion-weighted imaging and early parenchymal enhancement. AJNR Am J Neuroradiol 2005; 26: 1050-1055
  • 33 Vo KD, Santiago F, Lin W et al. MR imaging enhancement patterns as predictors of hemorrhagic transformation in acute ischemic stroke. AJNR Am J Neuroradiol 2003; 24: 674-679
  • 34 Alexandrov AV, Black SE, Ehrlich LE et al. Predictors of hemorrhagic transformation occurring spontaneously and on anticoagulants in patients with acute ischemic stroke. Stroke 1997; 28: 1198-1202
  • 35 Gregoire SM, Brown MM, Kallis C et al. MRI detection of new microbleeds in patients with ischemic stroke: five-year cohort follow-up study. Stroke 2010; 41: 184-186
  • 36 Boulanger JM, Coutts SB, Eliasziw M et al. Cerebral microhemorrhages predict new disabling or fatal strokes in patients with acute ischemic stroke or transient ischemic attack. Stroke 2006; 37: 911-914
  • 37 Paciaroni M, Agnelli G, Corea F et al. Early hemorrhagic transformation of brain infarction: rate, predictive factors, and influence on clinical outcome – results of a prospective multicenter study. Stroke 2008; 39: 2249-2256
  • 38 Berger C, Fiorelli M, Steiner T et al. Hemorrhagic transformation of ischemic brain tissue: asymptomatic or symptomatic?. Stroke 2001; 32: 1330-1335
  • 39 Cerebral Embolism Study Group. Immediate anticoagulation of embolic stroke: a randomized trial. Stroke 1983; 14: 668-676
  • 40 Boyko OB, Burger PC, Shelburne JD et al. Non-heme mechanisms for T1 shortening: pathologic, CT, and MR elucidation. AJNR Am J Neuroradiol 1992; 13: 1439-1445
  • 41 Kinoshita T, Ogawa T, Yoshida Y et al. Curvilinear T1 hyperintense lesions representing cortical necrosis after cerebral infarction. Neuroradiology 2005; 47 : 647-651
  • 42 Kesavadas C, Santhosh K, Thomas B et al. Signal changes in cortical laminar necrosis: evidence from susceptibility-weighted magnetic resonance imaging. Neuroradiology 2009; 51 : 293-298
  • 43 Siskas N, Lefkopoulos A, Ioannidis I et al. Cortical laminar necrosis in brain infarcts: serial MRI. Neuroradiology 2003; 45: 283-288
  • 44 Komiyama M, Nishikawa M, Yasui T. Cortical laminar necrosis in brain infarcts: chronological changes on MRI. Neuroradiology 1997; 39: 474-479
  • 45 Komiyama M, Nakajima H, Nishikawa M et al. Serial MR observation of cortical laminar necrosis caused by brain infarction. Neuroradiology 1998; 40: 771-777
  • 46 Niwa T, Aida N, Shishikura A et al. Susceptibility-weighted imaging findings of cortical laminar necrosis in pediatric patients. AJNR Am J Neuroradiol 2008; 29: 1795-1798
  • 47 Tsui YK, Tsai FY, Hasso AN et al. Susceptibility-weighted imaging for differential diagnosis of cerebral vascular pathology: a pictorial review. J Neurol Sci 2009; 287: 7-16
  • 48 Hacke W, Kaste M, Bluhmki E et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med 2008; 359: 1317-1329
  • 49 Roach ES, Golomb MR, Adams R et al. Management of stroke in infants and children: a scientific statement from a special writing group of the American Heart Association Stroke Council and the Council on Cardiovascular Disease in the Young. Stroke 2008; 39 : 2644-2691
  • 50 Tatum J, Farid H, Cooke D et al. Mechanical embolectomy for treatment of large vessel acute ischemic stroke in children. J Neurointerv Surg 2013; 5: 128-134
  • 51 Yuh WT, Maeda M, Wang AM et al. Fibrinolytic treatment of acute stroke: Are we treating reversible cerebral ischemia?. AJNR Am J Neuroradiol 1995; 16: 1994-2000
  • 52 Ueda T, Sakaki S, Yuh WTC et al. Outcome in acute stroke with successful intra-arterial thrombolysis and predictive value of initial single-photon emission-computed tomography. J Cereb Blood Flow Metab 1999; 19: 99-108
  • 53 Meyers PM, Schumacher HC, Higashida RT et al. Indications for the performance of intracranial endovascular neurointerventional procedures: a scientific statement from the American Heart Association Council on Cardiovascular Radiology and Intervention, Stroke Council, Council on Cardiovascular Surgery and Anesthesia, Interdisciplinary Council on Peripheral Vascular Disease, and Interdisciplinary Council on Quality of Care and Outcomes Research. Circulation 2009; 119: 2235-2249
  • 54 Lindley RI. Is intraarterial tPA within 3 hours the treatment of choice for selected stroke patients?: no. Stroke 2009; 40: 2613-2614
  • 55 Moonis M. Intraarterial thrombolysis within the first three hours after acute ischemic stroke in selected patients. Stroke 2009; 40: 2611-2612
  • 56 Gobin YP, Starkman S, Duckwiler GR et al. MERCI 1: a phase 1 study of Mechanical Embolus Removal in Cerebral Ischemia. Stroke 2004; 35: 2848-2854