Kardiologie up2date 2013; 09(03): 213-238
DOI: 10.1055/s-0033-1344782
Diagnostische Verfahren und Bildgebung
© Georg Thieme Verlag KG Stuttgart · New York

Zwei- und dreidimensionale Echokardiografie bei der Behandlung struktureller Herzerkrankungen

Nina C. Wunderlich
,
Hüseyin Ince
,
Ralf Birkemeyer
,
Stephan Kische
,
Christoph Nienaber
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
27. September 2013 (online)

Abstract

Catheter based treatment of structural heart disease is a rapidly progressing field. Echocardiography for patient selection and the guidance during percutaneous structural heart procedures has evolved from transthoracic 2D echo guidance of e.g. trancatheter mitral balloon valvuloplasties to more complex procedures such as device closure of congenital defects, left atrial appendage occlusion, repair and replacement of valves, or the closure of paravalvular leaks. In this context, echocardiography is continuously evolving and improving. As 2D technologies are limited in the visualization of complex 3D structures by nature, 3D echocardiography (particularly 3D TEE) recently has become an important adjunct in patient selection and intra-procedural guidance for such procedures. A newly developed EchoNavigator system (Philips Healthcare) may facilitate procedural guidance even further by matching echocardiographic and fluoroscopic images.

Kernaussagen
  • Bei katheterbasierten Interventionen an strukturellen kardialen Defekten spielt die Echokardiografie – insbesondere die TEE – zur Unterstützung der angiografischen Bildgebung die Hauptrolle.

  • Neben der 2 D TEE hat sich die 3 D TEE etabliert, da sie detaillierte Informationen über die 3 D Morphologie von Defekten liefert und den Verfahrensablauf durch eine räumliche Darstellung von Drähten, Kathetern, Okkludern und Zielstrukturen optimiert.

  • Eine integrative, multimodale Bildgebung, wie sie der EchoNavigator in Echtzeit bereitstellt, erlaubt die Fusion von Informationen verschiedener Bildgebungsverfahren (Echokardiografie und Angiografie), was die Einschränkungen einzelner Verfahren teils ausgleicht und die Verfahrenssteuerung weiter erleichtert.

 
  • Literatur

  • 1 Cubeddu RJ, Inglessis I, Palacios IF. Structural heart disease interventions: an emerging discipline in cardiovascular medicine. J Invasive Cardiol 2009; 21: 478-482
  • 2 Herrmann HC, Baxter S, Ruiz CE et al. Results of the Society of Cardiac Angiography and Interventions survey of physicians and training directors on procedures for structural and valvular heart disease. Catheter Cardiovasc Interv 2010; 76: E106-E110
  • 3 Feldman T, Ruiz CE, Hijazi ZM. Intervention. Catheter Cardiovasc Interv 2010; 76: E87-E89
  • 4 Chin D. Echocardiography for transcatheter aortic valve implantation. Eur J Echocardiogr 2009; 10: i21-i29
  • 5 Silvestry FE, Kerber RE, Brook MM et al. Echocardiograhy-guided interventions. J Am Soc Echocardiogr 2009; 22: 213-231
  • 6 Altiok E, Koos R, Schröder J et al. Comparison of two-dimensional and three-dimensional imaging techniques for measurement of aortic anulus diameters before transcatheter aortic valve implantation. Heart 2011; 97: 1578-1584
  • 7 Yano M, Nakamura K, Nagahama H et al. Aortic anulus diameter measurement: what is the best modality?. Ann Thorac Cardiovasc Surg 2012; 18: 115-120
  • 8 Kempfert J, Van Linden A, Lehmkuhl L et al. Aortic anulus sizing: echocardiographic versus computed tomography derived measurements in comparison with direct surgical sizing. Eur J Cardiothoracic Surg 2012; 42: 627-633
  • 9 Husser O, Rauch S, Endemann DH et al. Impact of three-dimensional transesophageal echocardiography on prosthesis sizing for transcatheter aortic valve implantation. Catheter Cardiovasc Interv 2012; 80: 956-963
  • 10 Tsang W, Bateman MG, Weinert L et al. Accuracy of aortic annular measurements obtained from three-dimensional echocardiography, CT, and MRI: human in vitro and in vivo studies. Heart 2012; 98: 1146-1152
  • 11 Gurvitch R, Webb JG, Yuan R et al. Aortic anulus diameter determination by multidetector computed tomography: reproducibility, applicability, and implications for transcatheter aortic valve implantation. JACC Cardiovasc Interv 2011; 4: 1235-1245
  • 12 Rubio DM, Súarez de Lezo Conde JC et al. Measurement of aortic valve anulus using different cardiac imaging techniques in transcatheter aortic valve implantation: agreement with finally implanted prosthesis size. Echocardiography 2011; 28: 388-396
  • 13 Schultz CJ, Moelker A, Piazza N et al. Three-dimensional evaluation of the aortic anulus using multislice computer tomography: are manufacturer’s guidelines for sizing for percutaneous aortic valve replacement helpful?. Eur Heart J 2010; 31: 849-856
  • 14 Ng AC, Delgado V, van der Kley F et al. Comparison of aortic root dimensions and geometries before and after trans­catheter aortic valve implantation by 2- and 3- dimensional transesophageal echocardiography and multislice computed tomography. Circ Cardiovasc Imag 2010; 3: 94-102
  • 15 Messika-Zeitoun D, Serfaty JM, Brochet E et al. Multimodal assessment of the aortic anulus diameter: implications for transcatheter aortic valve implantation. J Am Coll Cardiol 2010; 55: 186-194
  • 16 Bonow RO, Carabello BA, Chatterjee K et al. Practice Guidelines 2008 focused update incorporated into the ACC/ACC 2006 guidelines for the management of patients with valvular heart disease. J Am Coll Cardiol 2008; 52: e1-142
  • 17 Vahanian A, Baumgartner H, Bax J et al. Guidelines on the management of valvular heart disease. The Task Force on the management of valvular heart disease of the European Society of Cardiology. Eur Heart J 2007; 28: 230-268
  • 18 Lang RM, Badano LP, Tsang W et al. EAE/ASE Recommendations for Image Acquisition and Display Using Three-Dimensional Echocardiography. Eur Heart J Cardiovasc Imaging 2012; 13: 1-4
  • 19 Vahanian A, Alfieri OR, Nattar AA et al. Transcatheter valve implantation for aortic stenosis. Eur Heart J 2008; 29: 1463-1470
  • 20 Grube E, Buellesfeld L, Mueller R et al. Progress and current status of percutaneous aortic valve replacement: results of three device generations of the CoreValve ReValving system. Catheter Cardiovasc Interv 2008; 1: 167-175
  • 21 Moss RR, Ivens E, Pasupati S et al. Role of echocardiography in percutaneous aortic valve implantation. JACC Imaging 2008; 1: 15-24
  • 22 Zamorano JL, Badano LP, Bruce C et al. EAE/ASE recommendations for the use of echocardiography in new transcatheter interventions for valvulat heart disease. Eur Heart J 2011; 32: 2189-2214
  • 23 Jilaihawi H, Doctor N, Kashif M et al. Aortic annular sizing for transcatheter aortic valve replacement using cross-sectional 3-dimensional transesophageal echocardiography. J Am Coll Cardiol 2013; 61: 908-916
  • 24 Perk G, Lang RM, Garcia-Fernandez MA et al. Use of real-time three- dimensional transesophageal echocardiography in intracardiac catheter based interventions. J Am Soc Echocardiography 2009; 22: 865-882
  • 25 Lee AP, Lam YY, Yip GW et al. Role of real-time three-dimensional transesophageal echocardiography in guidance of interventional procedures in cardiology. Heart 2010; 96: 1485-1493
  • 26 Goncalves A, Marcos-Alberca P, Zamorano JL. Echocardiography: guidance during valve implantation. Euointervention 2010; 6 : G14-19
  • 27 Bloomfield GS, Gillam LD, Hahn RT et al. A practical guide to multimodality imaging of transcatheter aortic valve. replacement. JACC Cardiovasc Imaging 2012; 5: 441-455
  • 28 Alfieri O, Maisano F, DeBonis M et al. The edge-to-edge technique in mitral valve repair: A simple solution for complex problems. J Thorac Cardiovasc Surg 2001; 122: 674-681
  • 29 Feldman T, Wasserman HS, Herrmann HC et al. Percutaneous Mitrale Valve Repair Using the Edge-to-Edge Technique. Six-Month Results of the EVEREST Phase I Clinical Trial. J Am Coll Cardiol 2005; 46: 2134-2140
  • 30 Feldman T, Kar S, Rinaldi M et al. Percutaneous mitral repair with the MitraClip system: safety and midterm durability in the initial EVEREST cohort. J Am Coll Cardiol 2009; 54: 686-694
  • 31 Franzen O, Baldus S, Rudolph V et al. Acute outcomes of MitraClip therapy for mitral regurgitation in high-surgical-risk patients: emphasis on adverse valve morphology and severe left ventricular dysfunction. Eur H J 2010; 31: 1373-1381
  • 32 Lancelotti P, Moura L, Pierard LA et al. European Association of Echocardiography recommendations for the assessment of valvular regurgitation. Part 2: mitral and tricuspid regurgitation (native valve disease). Eur J Echocardiogr 2010; 11: 307-332
  • 33 Nguyen C, Lee E, Luo H et al. Echocardiographic Guidance for Diagnostic and Therapeutic Procedures. Cardiovascular diagnosis and Therapy 2011; 1: 11-36
  • 34 Lancelotti P, Moura L, Pierard LA et al. European Association of Echocardiography recommendations for the assessment of valvular regurgitation. Part 2: mitral and tricuspid regurgitation (native valve disease). Eur J Echocardiogr 2010; 11: 307-332
  • 35 La Canna G, Arendar I, Maisano F et al. Real-time three- dimensional transesophageal echocardiography for assessment of mitral valve functional anatomy in patients with prolapsed-related regurgitation. Am J Cardiol 2011; 107: 1365-1374
  • 36 Grewal J, Mankad S, Freeman WK et al. Real-time three-dimensional transesophageal echocardiography in the intraoperative assessment of mitral valve disease. J Am Soc Echocardiogr 2009; 22: 50-53
  • 37 Ben Zekry S, Nagueh SF, Little SH et al. Comparative accuracy of two- and three-dimensional transthoracic and transesophageal echocardiography in identifying mitral valve pathology in patients undergoing mitral valve repair: initial observations. J Am Soc Echocardiogr 2011; 24: 1079-1085
  • 38 Thompson KA, Shiota T, Tolstrup K et al. Utility of Three-Dimensional Transesophageal Echocardiography in the Diagnosis of Valvular Perforations. Am J Cardiol 2011; 107: 100-102
  • 39 Lang RM, Badano LP, Tsang W et al. EAE/ASE Recommendations for Image Acquisition and Display Using Three-Dimensional Echocardiography. J Am Soc Echocardiogr 2012; 25: 3-46
  • 40 Biner S, Perk G, Kar S et al. Utility of combined two-dimensional and three-dimensional transesophageal imaging for catheter-based mitral valve clip repair of mitral regurgitation. J Am Soc Echocardiogr 2011; 24: 611-617
  • 41 Foster E, Wasserman HS, Gray W et al. Quantitative assessment of severity of mitral regurgitation by serial echocardiography in a multicenter clinical trial of percutaneous mitral valve repair. Am J Cardiol 2007; 100: 1577-1583
  • 42 Iung B, Cormier B, Ducimetiere P et al. Immediate results of percutaneous mitral commissurotomy. A predictive model on a series of 1514 patients. Circulation 1996; 94: 2124-2130
  • 43 Palacios IF. Farewell to surgical mitral commissurotomy for many patients. Circulation 1998; 97: 223-226
  • 44 Hung JS, Chern MS, Wu JJ et al. Short and long-term results of catheter balloon percutaneous transvenous mitral commissurotomy. Am J Cardiol 1991; 67: 854-862
  • 45 Dean LS, Mickel M, Bonan R et al. Four-year follow-up of patients undergoing percutaneous balloon mitral commissurotomy: a report from the National Heart, Lung, and Blood Institute Balloon Valvuloplasty Registry. J Am Coll Cardiol 1996; 28: 1452-1457
  • 46 Abascal VM, Wilkins GT, Choong CY et al. Echocardiographic evaluation of mitral valve structure and function in patients followed for at least 6 months after percutaneous balloon mitral valvuloplasty. J Am Coll Cardiol 1988; 12: 606-615
  • 47 Post JR, Feldman T, Isner J et al. Inoue balloon mitral valvotomy in patients with severe valvular and subvalvular deformity. J Am Coll Cardiol 1995; 25: 1129-1136
  • 48 Hernandez R, Banuelos C, Alfonso F et al. Long-term clinical and echocardiographic follow-up after percutaneous mitral valvuloplasty with the Inoue balloon. Circulation 1999; 99: 1580-1586
  • 49 Iung BL, Garbarz E, Michaud P et al. Late results of percutaneous mitral commissurotomy in a series of 1024 patients: analysis of late clinical deterioration: frequency, anatomic findings and predictive factors. Circulation 1999; 99: 3272-3278
  • 50 Chen CR, Cheng TO, Chen JY et al. Long-term results of percutaneous balloon mitral valvuloplasty for mitral stenosis: a follow-up study to 11 years in 202 patients. Cathet Cardiovasc Diagn 1998; 43: 132-139
  • 51 Borger MA, Carrel TP, DeBonis M et al. Guidelines on the management of valvular heart disease (version 2012). Eur Heart J 2012; 33: 2451-2496
  • 52 Wood P. An appreciation of mitral stenosis: clinical features. Br Med J 1954; 4870: 1051
  • 53 Rowe JC, Bland EF, Sprague HB et al. The course of mitral stenosis without surgery: ten- and twenty-year perspectives. Ann Intern Med 1960; 52: 741-749
  • 54 Chen CG, Wang X, Wang Y et al. Value of two-dimensional echocardiography in selecting patients and balloon sizes for percutaneous balloon mitral valvuloplasty. J Am Coll Cardiol 1989; 14: 1651-1658
  • 55 Reid CL, Chandraratna PA, Kawanishi DT et al. Influence of mitral valve morphology on double-balloon catheter balloon valvuloplasty in patients with mitral stenosis. Analysis of factors predicting immediate and 3-month results. Circulation 1989; 80: 515-524
  • 56 Nobuyoshi M, Hamasaki N, Kimura T et al. Indications, complications, and short-term clinical outcome of percutaneous transvenous mitral commissurotomy. Circulation 1989; 80: 782-792
  • 57 Wilkins GT, Weyman AE, Abascal VM et al. Percutaneous balloon dilatation of the mitral valve: an analysis of echocardiographic variables related to outcome and the mechanism of dilatation. Br Heart J 1988; 60: 299-308
  • 58 Cannan CR, Nishimura RA, Reeder GS et al. Echocardiographic assessment of commissural calcium: a simple predictor of outcome after percutaneous mitral balloon valvotomy. J Am Coll Cardiol 1997; 29: 175-180
  • 59 Anwar AM, Attia WM, Nosir YF et al. Validation of a New Score for the Assessment of Mitral Stenosis Using Real-Time Three-Dimensional Echocardiography. J Am Soc Echocardiogr 2010; 23: 13-22
  • 60 Rao AS, Murthy RS, Naidu PB et al. Transesophageal echocardiography for the detection of left atrial thrombus. Indian Heart J 1994; 46: 37-40
  • 61 Messika-Zeitoun D, Blanc J, Iung B et al. Impact of degree of commissural opening after percutaneous mitral commissurotomy on long-term outcome. J Am Coll Cardiol img 2009; 2: 1-7
  • 62 Palacios IF, Sanchez PL, Harrell LC et al. Which patients benefit from percutaneous mitral balloon valvuloplasty? Prevalvuloplasty and postvalvuloplasty variables that predict long term outcome. Circulation 2002; 105: 1465-1471
  • 63 Chen CR, Cheng TO. Percutaneous balloon mitral valvuloplasty by the Inoue technique: a multicenter study of 4832 patients in China. Am Heart J 1995; 129: 1197-1203
  • 64 Zamorano J, Perez de Isal L, Sugeng L et al. Non-invasive assessment of mitral valve area during percutaneous balloon mitral valvuloplasty: role of real-time 3D echocardiography. Eur Heart J 2004; 25: 2086-2091
  • 65 Betocchi S, Losi MA, Chiariello M. From Special Problems in the Surgically Treated Valve Disease Patient. In: Cawford MA, et al., eds. Cardiology. London: Mosby; 2004: 1367
  • 66 Zoghbi WA, Chambers JB, Dumesnil JG et al. Recommendations for evaluation of prosthetic valves with echocardiography and Doppler ultrasound. JASE 2009; 22: 975-1012
  • 67 Pate GE, Zubaidi A, Chandavimol M et al. Percutaneous closure of prosthetic paravalvular leaks: case series and review. Catheter Cardiovasc Interv 2006; 68: 528-533
  • 68 Safi AM, Kwan T, Afflu E et al. Paravalvular regurgitation: a rare complication following valve replacement surgery. Angiology 2000; 51: 479-487
  • 69 Hammermeister K, Sethi G, Henderson W et al. Outcomes 15 years after valve replacement with a mechanical versus a bioprosthetic valve: final report of the Veterans Affairs randomized trial. J AM Coll Cardiol 2000; 36: 1152-1158
  • 70 Orzulak TA, Schaff HV, Danielson GK et al. Results of reoperation for periprosthetic leakage. Ann Thorac Surg 1983; 35: 584-589
  • 71 Echevarria JR, Bernal JM, Rabasa JM et al. Reoperation for bioprosthetic valve dysfunction. A decade of clinical experience. Eur J Cardiothorac Surg 1991; 5: 523-526 Discussion 527
  • 72 Expósito V, Garcia-Camarero T, Bernal JM et al. Repeat mitral valve replacement: 30-years’ experience. Rev Esp Cardiol 2009; 62: 929-932
  • 73 Hein R, Wunderlich N, Robertson G et al. Catheter closure of paravalvular leak. EuroIntervention 2006; 3: 318-325
  • 74 Del Valle-Fernandez R, Martinez C, Jelnin V et al. Paravalvular leak closure: single-center experience. Eur Heart J 2009; 30 (Abstract supplement): 920
  • 75 Pate GE, Thomson CR, Munt BI et al. Techniques for percutaneous closure of prosthetic paravalvular leaks. Catheter Cardiovasc Interv 2006; 67: 158-166
  • 76 Shapira Y, Hirsch R, Kornowski R et al. Percutaneous closure of perivalvular leaks with Amplatzer occluders: feasibility, safety, and short term results. J Heart Valve Dis 2007; 16: 305-313
  • 77 Sorajja P, Cabalka AK, Hagler DJ et al. Successful percutaneous repair of perivalvular prosthetic regurgitation. Catheter Cardiovasc Interv 2007; 70: 815-823
  • 78 Cortes M, Garcia E, Garcia-Fernandez MA et al. Usefulness of transesophageal echocardiography in percutaneous transcatheter repair of paravalvular mitral regurgitation. Am J Cardiol 2008; 101: 382-386
  • 79 Garcia Borbolla Fernandez R, Sanch Jaldon M, Calle Perez G et al. Percutaneous treatment of mitral valve periprosthetic leakage. An alternative to high-risk surgery?. Rev Esp Cardiol 2009; 62: 438-441
  • 80 Nietlispach F, Johnson M, Moss RR et al. Transcatheter closure of paravalvular defects using a purpose specific occluder. J Am Coll Cardiol Interv 2010; 3: 759-765
  • 81 Ruiz C, Jelnin V, Kronzon I et al. Clinical outcomes in patients undergoing percutaneous closure of peroprosthetic paravalvular leaks. J Am Coll Cardiol 2011; 58: 2210-2217
  • 82 Safi AM, Kwan T, Afflu E et al. Paravalvular regurgitation: a rare complication following valve replavcement surgery. Angiology 2000; 51: 479-487
  • 83 Genoni M, Franzen D, Tavakoli R et al. Does the morphology of mitral paravalvular leaks influence symptoms and hemolysis?. J Heart Valve Dis 2001; 10: 426-430
  • 84 Kronzon I, Sugeng L, Perk G et al. Real- time 3-dimensional transesophageal echocardiography in the evaluation of post-operative mitral annuloplasty ring and prosthetic valve dehiscence. J Am Coll Cardiol 2009; 53: 1543-1547
  • 85 Pate G, Webb J, Thompson C et al. Percutaneous closure of a complex prosthetic mitral paravalvular leak using transesophageal echocardiographic guidance. Can J Cardiol 2004; 20: 452-455
  • 86 Aslam AK, Aslam AF, Vasavada BC et al. Prosthetic heart valves: types and echocardiographic evaluation. Int J Cardiol 2007; 122: 99-110
  • 87 Vitarelli A, Conde Y, Cimino E et al. Assessment of severity of mechanical prosthetic mitral regurgitation by transesophageal echocardiography. Heart 2004; 90: 539-544
  • 88 Foster GP, Isselbacher EM, Rose GA et al. Accurate localization of mitral regurgitant defects using multiplane transesophageal echocardiography. Ann Thorac Surg 1998; 65: 1025-1031
  • 89 Chambers J, Monaghan M, Jackson G. Colour flow Doppler mapping in the assessment of prosthetic valve regurgitation. Br Heart J 1989; 62: 1-8
  • 90 Kapur KK, Fan P, Nanda NC et al. Doppler color flow mapping in the evaluation of prosthetic mitral and aortic valve function. J Am Coll Cardiol 1989; 13: 1561-1571
  • 91 Faletra F, De Chiara F, Corno R et al. Additional diagnostic value of multiplane echocardiography over biplane imaging in assessment of mitral prosthetic valves. Heart 1996; 75: 609-613
  • 92 Garcia-Fernandez MA, Cortes M, Garcia-Robles JA et al. Utility of real-time three-dimensional echocardiography in evaluating the success of percutaneous transcatheter closure of mitral paravalvular leaks. J Am Soc Echocardiogr 2010; 23: 26-32
  • 93 Biner S, Kar S, Siegel RJ et al. Value of colour Doppler three-dimensional transesophageal echocardiography in the percutaneous closure of mitral prosthesis paravalvular leak. Am J Cardiol 2010; 105: 984-989
  • 94 Kannel WB, Benjamin EJ. Status of the epidemiology of atrial fibrillation. Med Clin North Am 2008; 92: 17-40
  • 95 Thambidorai SK, Murray RD, Parakh K et al. Utility of thransesophageal echocardiography in identification of thrombogenic milieu in patients with atrial fibrillation (an ACUTE ancillary study). Am J Cardiol 2005; 96: 935-941
  • 96 Bayard YL, Omran H, Neuzil P et al. PLAATO (Percutaneous Left Atrial Appendage Transcatheter Occlusion) for prevention of cardioembolic stroke in non-anticoagulation eligible atrial fibrillation patients: results from the European PLAATO study. EuroIntervention 2010; 6: 220-226
  • 97 Block PC, Burstein S, Casale PN et al. Percutaneous left atrial appendage occlusion for patients in atrial fibrillation suboptimal for warfarin therapy: 5-year results of the PLAATO (Percutaneous Left Atrial Appendage Transcathter Occlusion) Study. LACC Cardiovasc Interv 2009; 2: 594-600
  • 98 Sick PB, Schuler G, Hauptmann KE et al. Initial worldwide experience with the WATCHMAN left atrial appendage system for stroke prevention in atrial fibrillation. J AM Coll Cardiol 2007; 49: 1490-1495
  • 99 Holmes DR, Reddy VY, Turi ZG et al. Percutaneous closure of the left atrial appendage versus warfarin therapy for prevention of stroke in patients with atrial fibrillation: a randomised non-inferiority trial. Lancet 2009; 374: 534-542
  • 100 Park JW, Bethencourt A, Sievert H et al. Left atrial appendage closure with Amplatzer cardiac plug in atrial fibrillation – Initial European experience. Catheter Cardiovasc Interv 2011; 77: 700-706
  • 101 Camm AJ, Lip GHY, De Caterina R et al. An update of the 2010 ESC Guidelines for the management of atrial fibrillation. Developed with the special contribution of the European Heart Rhythm Association. Eur Heart J 2012; DOI
  • 102 Hara H, Virman IR, Holmes JR et al. Is the left atrial appendage more than a simple appendage?. Catheter Cardiovasc Interv 2009; 74: 234-242
  • 103 Su P, McCarthy KP, Ho SY. Occluding the left atrial appendage: anatomical considerations. Heart 2008; 94: 1166-1170
  • 104 Donal E, Yamada H, Leclercq C et al. The left atrial appendage, a small, blind-ended structure: a review of its echocardiographic evaluation and its clinical role. Chest 2005; 128: 1853-1862
  • 105 Shah SJ, Bardo DM, Sugeng L et al. Real-time three-dimensional transesophageal echocardiography of the left atrial appendage: initial experience in the clinical setting. J Am Soc Echocardiogr 2008; 21: 1362-1368
  • 106 Nucifora G, Faletra FF, Regoli F et al. Evaluation of the left atrial appendage with real-time three-dimensional transesophageal echocardiography: implications for catheter–based left atrial appendage closure. Circ Cardiovasc Imaging 2011; 4: 514-523
  • 107 Lechat P, Mas JL, Lascault G et al. Prevalence of patent foramen ovale in patients with stroke. N Engl J Med 1998; 318: 1148-1152
  • 108 Mas JL, Arquizan C, Lamy C et al. Recurrent cerebrovascular events associated with a patent foramen ovale, atrial septal aneurysm or both. N Engl J Med 2001; 345: 1740-1746
  • 109 Meissner I, Khandheria BK, Heit JA et al. Patent foramen ovale: innocent or guilty? Evidence from a prospective population based study. J Am Coll Cardiol 2006; 47: 440-445
  • 110 Overall JR, Bone I, Lees KR. Interatrial septal abnormalities and stroke: a meta-analysis of case-control studies. Neurology 2000; 55: 1172-1179
  • 111 Windecker S, Wahl A, Chatterjee T et al. Percutaneous closure of patent foramen ovale in patients with paradoxical embolism: long term risks of recurrent thromboembolic events. Circulation 2000; 101: 893-898
  • 112 Hung J, Landzberg MJ, Jenkins KJ et al. Closure of patent foramen ovale for paradoxical emboli: intermediate term risk of recurrent neurological events following transcatheter device placement. J Am Coll Cardiol 2000; 35: 1311-1316
  • 113 Martin F, Sanchez PL, Doherty E et al. Percutaneous transcatheter closure of patent foramen ovale in patients with paradoxical embolism. Circulation 2002; 106: 1112-1116
  • 114 Kronik G, Slany J, Moesslacher H. Contrast M-mode echocardiography in diagnosis of atrial septal defect in acyanotic patients. Circulation 1979; 59: 372-378
  • 115 Lynch JJ, Schuchard GH, Gross CM et al. Prevalence of right-to-left atrial shunting in a healthy population: detection bei Valsalva maneuver contrast echocardiography. Am J Cardiol 1984; 53: 1478-1480
  • 116 Homma S, Di Tullio MR, Sacco RL et al. Characteristics of patent foramen ovale associated with cryptogenic stroke. A biplane transesophageal echocardiography study. Stroke 1994; 25: 582-586
  • 117 Mas JL, Arquizan C, Lamy C et al. Recurrent cerebrovascular events associated with patent foramen ovale, atrial septal aneurysm, or both. N Engl J Med 2001; 345: 1740-1746
  • 118 Martin F, Sanchez PL, Doherty E et al. Percutaneous transcatheter closure of patent foramen ovale in patients with paradoxical embolism. Circulation 2002; 106: 1121-1126
  • 119 Hausmann D, Mugge A, Daniel WG. Identification of patent formaen ovale permitting paradoxic embolism. J Am Coll Cardiol 1995; 26: 1030-1038
  • 120 Souteyrand G, Motraff P, Lusson JR et al. Comparison of transthoracic echocardiography using second harmonic imaging, transcranial Doppler and transesophageal echocardiography for he detection of patent foramen ovale in stroke patients. Eur J Echocardiography 2006; 7: 147-154
  • 121 Schneider B, Zienkiewicz T, Jansen V et al. Diagnosis of patent foramen ovale by transesophageal echocardiography and correlation with autopsy findings. Am J Cardiol 1996; 77: 1202-1209
  • 122 Knebel F, Masuhr F, von Hausen W et al. Transesophageal echocardiography in patients with cryptogenic cerebral ischemia. Cardiovascular Ultrasound 2009; 7: 15
  • 123 Schuchlenz HW, Weihs W, Horner S et al. The Association between the Diameter of a Patent Foramen ovale and the Risk of Embolic Cerebrovascular Events. Am J Med 2000; 109: 456-462
  • 124 Schuchlenz HW, Weihs W, Beitzke A et al. Transesophageal echocardiography for quantifying size of patent formamen ovale in patients with cryptogenic cerebrovascular events. Stroke 2002; 33: 293-296
  • 125 Agmon Y, Khandheira BK, Meissner I et al. Comparison of frequency of patent foramen ovale by transesophageal echocardiography in patients with cerebral ischemic events versus in subjects in the general population. Am J Cardiol 1999; 88: 330-332
  • 126 Rana BS, Shapisro LM, McCarthy KP et al. Three-dimesnional imaging fort he atrial septum and patent foramen ovale anatomy: defining the morphological phenotypes of patent foramen ovale. Eur J of Echocardiography 2010; 11: i19-i25
  • 127 Braunwald E, Zipes DP, Libby P et al. Heart Disease. A textbook of cardiovascular medicine. Philadelphia: 2005: 1506
  • 128 Krasushi RA. When and how to fix a “hole in the heart”: approach to ASD and PFO. Cleve Clin J Med 2007; 74: 137-147
  • 129 Bermudez EA. From Echocardiography in the Assessment of Atrial Septal Defects. In: Solomon ST, ed. Essential Echocardiography: A Practical Handbook. Totowa: Humana Press; 2007
  • 130 Giardini A, Donti A, Formigari R et al. Determinants of Cardiopulmonary Functional Improvement After Transcatheter Atrial Septal Defect Closure in Asymptomatic Adults. J Am Coll Cardiol 2004; 43: 1886-1891
  • 131 Webb G, Gatzoulis MA. Atrial septal defects in the adult: recent progress and overview. Circulation 2006; 114: 1645-1653
  • 132 Lodato JA, Cao QL, Weinert L et al. Feasibility of real-time three-dimensional transoesophageal echocardiography for guidance of percutaneous atrial septal defect closure. Eur J Echo 2009; 10: 543-548
  • 133 Seo JS, Song JM, Kim YH et al. Effect of atrial septal defect shape evaluated using three-dimensional transesophageal echocardiography on size measurements for percutaneous closure. Echocardiography 2012; 29: 729-734
  • 134 Chessa M, Carminati M, Butera G et al. Early and late complications associated with transcatheter occlusion of secundum atrial septal defect. JACC 2002; 39: 1061-1065
  • 135 Egred M, Andron M, Albouaini K et al. Percutaneous closure of patent foramen ovale and atrial septal defect: procedure outcome and medium-term follow-up. J Interventional Cardiol 2007; 20: 395-401
  • 136 Peuster M, Reckers J, Fink C. Secondary embolization of a Helex occluder implanted into a secundum atrial septal defect. Cathet Cardiovac Interv 2003; 59: 77-82
  • 137 Celiker A, Bilgic A, Ozkutlu S et al. A late complication with the CardioSEAL ASD occluder device and need for surgical revision. Catheter Cardiovasc Interv 2001; 54: 335-338
  • 138 Mashman WE, King SB, Jacobs WC et al. Two cases of late embolization of Amplatzer septal occluder devices to the pulmonary artery following closure of secundum atrial septal defects. CCI 2005; 65: 588-592
  • 139 Krumsdorf U, Ostermayer S, Billinger K et al. Incidence and clinical course of thrombus formation on atrial septal defect and patent foramen ovale closure devices in 1,000 consecutive patients. JACC 2004; 43: 302-309
  • 140 Amin Z, Hijazi ZM, Bass JL et al. Erosion of Amplantzer septal occluder device after closure of secundum atrial septal defects: review of registry of complications and recommendations to minimize future risk. Catheter Cardiovasc Interv 2004; 63: 496-502
  • 141 Schoen SP, Boscheri A, Lange SA et al. Incidence of aortic valve regurgitation and outcome after percutaneous closure of atrial septal defects and patent foramen ovale. Heart 2008; 94: 844-847
  • 142 Yared K, Baggish AL, Solis J et al. Echocardiography assessment of percutaneous patent foramen ovale and atrial septal defect closure complications. Circ Cardiovasc Imaging 2009; 2: 141-149