RSS-Feed abonnieren
DOI: 10.1055/s-0033-1345717
The Molecular Virology of Hepatitis B Virus
Publikationsverlauf
Publikationsdatum:
08. Juni 2013 (online)
Abstract
Hepatitis B virus (HBV) is one of the smallest enveloped DNA viruses and the prototype member of the family of Hepadnaviridae that causes acute and chronic infections of mammals (including human) and birds. HBV has evolved an extreme adaptation and dependency to differentiated hepatocytes of its host. Despite its very limited coding capacity with only four open-reading frames, HBV is able to evade the immune system of the host and persist lifelong within infected hepatocytes. During active replication, HBV produces enormous viral loads in the blood and a massive surplus of subviral surface antigen particles in the serum of infected patients without killing their hepatocytes. Together with the use of a reverse transcriptase during replication, it provides an enormous genetic flexibility for selection of viral mutants upon selective pressure, for example, by the immune system or antiviral therapy. In addition, viral wild-type and mutated genomes are stably archived in the nucleus of the infected hepatocyte in an episomal DNA form that provides independence from cellular replication or integration within the host genome. We are just beginning to understand the delicate molecular and cellular interactions during the HBV replicative cycle within infected hepatocytes, so further studies are urgently needed to provide a better basis for further diagnostic and therapeutic options.
-
References
- 1 Ott JJ, Stevens GA, Groeger J, Wiersma ST. Global epidemiology of hepatitis B virus infection: new estimates of age-specific HBsAg seroprevalence and endemicity. Vaccine 2012; 30 (12) 2212-2219
- 2 International Committee on Taxonomy of Viruses (ICTV). Virus Taxonomy. 2012. Available at: http://www.ictvonline.org/index.asp . Accessed February 12, 2013
- 3 Landers TA, Greenberg HB, Robinson WS. Structure of hepatitis B Dane particle DNA and nature of the endogenous DNA polymerase reaction. J Virol 1977; 23 (2) 368-376
- 4 Beck J, Nassal M. Hepatitis B virus replication. World J Gastroenterol 2007; 13 (1) 48-64
- 5 Heermann KH, Goldmann U, Schwartz W, Seyffarth T, Baumgarten H, Gerlich WH. Large surface proteins of hepatitis B virus containing the pre-s sequence. J Virol 1984; 52 (2) 396-402
- 6 Glebe D, Urban S. Viral and cellular determinants involved in hepadnaviral entry. World J Gastroenterol 2007; 13 (1) 22-38
- 7 Garcia PD, Ou JH, Rutter WJ, Walter P. Targeting of the hepatitis B virus precore protein to the endoplasmic reticulum membrane: after signal peptide cleavage translocation can be aborted and the product released into the cytoplasm. J Cell Biol 1988; 106 (4) 1093-1104
- 8 Magnius LO, Espmark A. A new antigen complex co-occurring with Australia antigen. Acta Pathologica et Microbiologica Scandinavica Section B. Microbiol Immunol 1972; 80 (2) 335-337
- 9 Kew MC. Hepatitis B virus x protein in the pathogenesis of hepatitis B virus-induced hepatocellular carcinoma. J Gastroenterol Hepatol 2011; 26 (Suppl. 01) 144-152
- 10 Lucifora J, Arzberger S, Durantel D , et al. Hepatitis B virus X protein is essential to initiate and maintain virus replication after infection. J Hepatol 2011; 55 (5) 996-1003
- 11 Seitz S, Urban S, Antoni C, Böttcher B. Cryo-electron microscopy of hepatitis B virions reveals variability in envelope capsid interactions. EMBO J 2007; 26 (18) 4160-4167
- 12 Dryden KA, Wieland SF, Whitten-Bauer C, Gerin JL, Chisari FV, Yeager M. Native hepatitis B virions and capsids visualized by electron cryomicroscopy. Mol Cell 2006; 22 (6) 843-850
- 13 Kann M, Gerlich WH. Effect of core protein phosphorylation by protein kinase C on encapsidation of RNA within core particles of hepatitis B virus. J Virol 1994; 68 (12) 7993-8000
- 14 Wittkop L, Schwarz A, Cassany A , et al. Inhibition of protein kinase C phosphorylation of hepatitis B virus capsids inhibits virion formation and causes intracellular capsid accumulation. Cell Microbiol 2010; 12 (7) 962-975
- 15 Kau JH, Ting LP. Phosphorylation of the core protein of hepatitis B virus by a 46-kilodalton serine kinase. J Virol 1998; 72 (5) 3796-3803
- 16 Raney AK, Easton AJ, Milich DR, McLachlan A. Promoter-specific transactivation of hepatitis B virus transcription by a glutamine- and proline-rich domain of hepatocyte nuclear factor 1. J Virol 1991; 65 (11) 5774-5781
- 17 Cattaneo R, Will H, Hernandez N, Schaller H. Signals regulating hepatitis B surface antigen transcription. Nature 1983; 305 (5932) 336-338
- 18 Berting A, Hahnen J, Kröger M, Gerlich WH. Computer-aided studies on the spatial structure of the small hepatitis B surface protein. Intervirology 1995; 38 (1-2) 8-15
- 19 Eble BE, Lingappa VR, Ganem D. The N-terminal (pre-S2) domain of a hepatitis B virus surface glycoprotein is translocated across membranes by downstream signal sequences. J Virol 1990; 64 (3) 1414-1419
- 20 Schmitt S, Glebe D, Alving K , et al. Analysis of the pre-S2 N- and O-linked glycans of the M surface protein from human hepatitis B virus. J Biol Chem 1999; 274 (17) 11945-11957
- 21 Schmitt S, Glebe D, Tolle TK , et al. Structure of pre-S2 N- and O-linked glycans in surface proteins from different genotypes of hepatitis B virus. J Gen Virol 2004; 85 (Pt 7) 2045-2053
- 22 Löffler-Mary H, Dumortier J, Klentsch-Zimmer C, Prange R. Hepatitis B virus assembly is sensitive to changes in the cytosolic S loop of the envelope proteins. Virology 2000; 270 (2) 358-367
- 23 Le Seyec J, Chouteau P, Cannie I, Guguen-Guillouzo C, Gripon P. Infection process of the hepatitis B virus depends on the presence of a defined sequence in the pre-S1 domain. J Virol 1999; 73 (3) 2052-2057
- 24 Schulze A, Gripon P, Urban S. Hepatitis B virus infection initiates with a large surface protein-dependent binding to heparan sulfate proteoglycans. Hepatology 2007; 46 (6) 1759-1768
- 25 Glebe D, Urban S, Knoop EV , et al. Mapping of the hepatitis B virus attachment site by use of infection-inhibiting preS1 lipopeptides and tupaia hepatocytes. Gastroenterology 2005; 129 (1) 234-245
- 26 Glebe D, Aliakbari M, Krass P, Knoop EV, Valerius KP, Gerlich WH. Pre-S1 antigen-dependent infection of Tupaia hepatocyte cultures with human hepatitis B virus. J Virol 2003; 77 (17) 9511-9521
- 27 Ostapchuk P, Hearing P, Ganem D. A dramatic shift in the transmembrane topology of a viral envelope glycoprotein accompanies hepatitis B viral morphogenesis. EMBO J 1994; 13 (5) 1048-1057
- 28 Bruss V, Lu X, Thomssen R, Gerlich WH. Post-translational alterations in transmembrane topology of the hepatitis B virus large envelope protein. EMBO J 1994; 13 (10) 2273-2279
- 29 Prange R, Streeck RE. Novel transmembrane topology of the hepatitis B virus envelope proteins. EMBO J 1995; 14 (2) 247-256
- 30 Lambert C, Prange R. Dual topology of the hepatitis B virus large envelope protein: determinants influencing post-translational pre-S translocation. J Biol Chem 2001; 276 (25) 22265-22272
- 31 Lambert C, Mann S, Prange R. Assessment of determinants affecting the dual topology of hepadnaviral large envelope proteins. J Gen Virol 2004; 85 (Pt 5) 1221-1225
- 32 Leistner CM, Gruen-Bernhard S, Glebe D. Role of glycosaminoglycans for binding and infection of hepatitis B virus. Cell Microbiol 2008; 10 (1) 122-133
- 33 Sureau C, Salisse J. A conformational heparan sulfate binding site essential to infectivity overlaps with the conserved hepatitis B virus A-determinant. Hepatology 2013; 57 (3) 985-994
- 34 Glebe D. Attachment sites and neutralising epitopes of hepatitis B virus. Minerva Gastroenterol Dietol 2006; 52 (1) 3-21
- 35 Yan H, Zhong G, Xu G , et al. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. eLife 2012; 1: 49
- 36 Chouteau P, Le Seyec J, Cannie I, Nassal M, Guguen-Guillouzo C, Gripon P. A short N-proximal region in the large envelope protein harbors a determinant that contributes to the species specificity of human hepatitis B virus. J Virol 2001; 75 (23) 11565-11572
- 37 Barrera A, Guerra B, Notvall L, Lanford RE. Mapping of the hepatitis B virus pre-S1 domain involved in receptor recognition. J Virol 2005; 79 (15) 9786-9798
- 38 Blanchet M, Sureau C. Infectivity determinants of the hepatitis B virus pre-S domain are confined to the N-terminal 75 amino acid residues. J Virol 2007; 81 (11) 5841-5849
- 39 Bruss V, Hagelstein J, Gerhardt E, Galle PR. Myristylation of the large surface protein is required for hepatitis B virus in vitro infectivity. Virology 1996; 218 (2) 396-399
- 40 Gripon P, Le Seyec J, Rumin S, Guguen-Guillouzo C. Myristylation of the hepatitis B virus large surface protein is essential for viral infectivity. Virology 1995; 213 (2) 292-299
- 41 Gripon P, Rumin S, Urban S , et al. Infection of a human hepatoma cell line by hepatitis B virus. Proc Natl Acad Sci U S A 2002; 99 (24) 15655-15660
- 42 Petersen J, Dandri M, Mier W , et al. Prevention of hepatitis B virus infection in vivo by entry inhibitors derived from the large envelope protein. Nat Biotechnol 2008; 26 (3) 335-341
- 43 Volz T, Allweiss L , M Barek MB, et al. The entry inhibitor Myrcludex-B efficiently blocks intrahepatic virus spreading in humanized mice previously infected with hepatitis B virus. J Hepatol 2012;
- 44 Gripon P, Cannie I, Urban S. Efficient inhibition of hepatitis B virus infection by acylated peptides derived from the large viral surface protein. J Virol 2005; 79 (3) 1613-1622
- 45 Urban S, Gripon P. Inhibition of duck hepatitis B virus infection by a myristoylated pre-S peptide of the large viral surface protein. J Virol 2002; 76 (4) 1986-1990
- 46 Schulze A, Schieck A, Ni Y, Mier W, Urban S. Fine mapping of pre-S sequence requirements for hepatitis B virus large envelope protein-mediated receptor interaction. J Virol 2010; 84 (4) 1989-2000
- 47 Engelke M, Mills K, Seitz S , et al. Characterization of a hepatitis B and hepatitis delta virus receptor binding site. Hepatology 2006; 43 (4) 750-760
- 48 Niedre-Otomere B, Bogdanova A, Skrastina D , et al. Recombinant Semliki Forest virus vectors encoding hepatitis B virus small surface and pre-S1 antigens induce broadly reactive neutralizing antibodies. J Viral Hepat 2012; 19 (9) 664-673
- 49 Bremer CM, Sominskaya I, Skrastina D , et al. N-terminal myristoylation-dependent masking of neutralizing epitopes in the preS1 attachment site of hepatitis B virus. J Hepatol 2011; 55 (1) 29-37
- 50 Salisse J, Sureau C. A function essential to viral entry underlies the hepatitis B virus “a” determinant. J Virol 2009; 83 (18) 9321-9328
- 51 Lepère-Douard C, Trotard M, Le Seyec J, Gripon P. The first transmembrane domain of the hepatitis B virus large envelope protein is crucial for infectivity. J Virol 2009; 83 (22) 11819-11829
- 52 Abou-Jaoudé G, Sureau C. Entry of hepatitis delta virus requires the conserved cysteine residues of the hepatitis B virus envelope protein antigenic loop and is blocked by inhibitors of thiol-disulfide exchange. J Virol 2007; 81 (23) 13057-13066
- 53 Berting A, Fischer C, Schaefer S, Garten W, Klenk HD, Gerlich WH. Hemifusion activity of a chimeric influenza virus hemagglutinin with a putative fusion peptide from hepatitis B virus. Virus Res 2000; 68 (1) 35-49
- 54 Fernholz D, Galle PR, Stemler M, Brunetto M, Bonino F, Will H. Infectious hepatitis B virus variant defective in pre-S2 protein expression in a chronic carrier. Virology 1993; 194 (1) 137-148
- 55 Sureau C, Guerra B, Lee H. The middle hepatitis B virus envelope protein is not necessary for infectivity of hepatitis delta virus. J Virol 1994; 68 (6) 4063-4066
- 56 Ni Y, Sonnabend J, Seitz S, Urban S. The pre-s2 domain of the hepatitis B virus is dispensable for infectivity but serves a spacer function for L-protein-connected virus assembly. J Virol 2010; 84 (8) 3879-3888
- 57 Stoeckl L, Funk A, Kopitzki A , et al. Identification of a structural motif crucial for infectivity of hepatitis B viruses. Proc Natl Acad Sci U S A 2006; 103 (17) 6730-6734
- 58 Wang HC, Huang W, Lai MD, Su IJ. Hepatitis B virus pre-S mutants, endoplasmic reticulum stress and hepatocarcinogenesis. Cancer Sci 2006; 97 (8) 683-688
- 59 Mercer J, Schelhaas M, Helenius A. Virus entry by endocytosis. Annu Rev Biochem 2010; 79: 803-833
- 60 Gavilanes F, Gonzalez-Ros JM, Peterson DL. Structure of hepatitis B surface antigen. Characterization of the lipid components and their association with the viral proteins. J Biol Chem 1982; 257 (13) 7770-7777
- 61 Bremer CM, Bung C, Kott N, Hardt M, Glebe D. Hepatitis B virus infection is dependent on cholesterol in the viral envelope. Cell Microbiol 2009; 11 (2) 249-260
- 62 Graham DR, Chertova E, Hilburn JM, Arthur LO, Hildreth JE. Cholesterol depletion of human immunodeficiency virus type 1 and simian immunodeficiency virus with beta-cyclodextrin inactivates and permeabilizes the virions: evidence for virion-associated lipid rafts. J Virol 2003; 77 (15) 8237-8248
- 63 Rabe B, Glebe D, Kann M. Lipid-mediated introduction of hepatitis B virus capsids into nonsusceptible cells allows highly efficient replication and facilitates the study of early infection events. J Virol 2006; 80 (11) 5465-5473
- 64 Schmitz A, Schwarz A, Foss M , et al. Nucleoporin 153 arrests the nuclear import of hepatitis B virus capsids in the nuclear basket. PLoS Pathog 2010; 6 (1) e1000741
- 65 Rabe B, Delaleau M, Bischof A , et al. Nuclear entry of hepatitis B virus capsids involves disintegration to protein dimers followed by nuclear reassociation to capsids. PLoS Pathog 2009; 5 (8) e1000563
- 66 Köck J, Rösler C, Zhang JJ, Blum HE, Nassal M, Thoma C. Generation of covalently closed circular DNA of hepatitis B viruses via intracellular recycling is regulated in a virus specific manner. PLoS Pathog 2010; 6 (9) e1001082
- 67 Levrero M, Pollicino T, Petersen J, Belloni L, Raimondo G, Dandri M. Control of cccDNA function in hepatitis B virus infection. J Hepatol 2009; 51 (3) 581-592
- 68 Vartanian JP, Henry M, Marchio A , et al. Massive APOBEC3 editing of hepatitis B viral DNA in cirrhosis. PLoS Pathog 2010; 6 (5) e1000928
- 69 Grimm D, Heeg M, Thimme R. Hepatitis B virus: from immunobiology to immunotherapy. Clin Sci (Lond) 2013; 124 (2) 77-85
- 70 Gerelsaikhan T, Tavis JE, Bruss V. Hepatitis B virus nucleocapsid envelopment does not occur without genomic DNA synthesis. J Virol 1996; 70 (7) 4269-4274
- 71 Bruss V. A short linear sequence in the pre-S domain of the large hepatitis B virus envelope protein required for virion formation. J Virol 1997; 71 (12) 9350-9357
- 72 Tan WS, Dyson MR, Murray K. Two distinct segments of the hepatitis B virus surface antigen contribute synergistically to its association with the viral core particles. J Mol Biol 1999; 286 (3) 797-808
- 73 Blanchet M, Sureau C. Analysis of the cytosolic domains of the hepatitis B virus envelope proteins for their function in viral particle assembly and infectivity. J Virol 2006; 80 (24) 11935-11945
- 74 Poisson F, Severac A, Hourioux C, Goudeau A, Roingeard P. Both pre-S1 and S domains of hepatitis B virus envelope proteins interact with the core particle. Virology 1997; 228 (1) 115-120
- 75 Lambert C, Döring T, Prange R. Hepatitis B virus maturation is sensitive to functional inhibition of ESCRT-III, Vps4, and gamma 2-adaptin. J Virol 2007; 81 (17) 9050-9060
- 76 Watanabe T, Sorensen EM, Naito A, Schott M, Kim S, Ahlquist P. Involvement of host cellular multivesicular body functions in hepatitis B virus budding. Proc Natl Acad Sci U S A 2007; 104 (24) 10205-10210
- 77 Morita E. Differential requirements of mammalian ESCRTs in multivesicular body formation, virus budding and cell division. FEBS J 2012; 279 (8) 1399-1406
- 78 Guizetti J, Schermelleh L, Mäntler J , et al. Cortical constriction during abscission involves helices of ESCRT-III-dependent filaments. Science 2011; 331 (6024) 1616-1620
- 79 Guizetti J, Gerlich DW. ESCRT-III polymers in membrane neck constriction. Trends Cell Biol 2012; 22 (3) 133-140
- 80 Hurley JH, Hanson PI. Membrane budding and scission by the ESCRT machinery: it's all in the neck. Nat Rev Mol Cell Biol 2010; 11 (8) 556-566
- 81 Weiss ER, Göttlinger H. The role of cellular factors in promoting HIV budding. J Mol Biol 2011; 410 (4) 525-533
- 82 Rost M, Mann S, Lambert C, Döring T, Thomé N, Prange R. Gamma-adaptin, a novel ubiquitin-interacting adaptor, and Nedd4 ubiquitin ligase control hepatitis B virus maturation. J Biol Chem 2006; 281 (39) 29297-29308
- 83 Pairan A, Bruss V. Functional surfaces of the hepatitis B virus capsid. J Virol 2009; 83 (22) 11616-11623
- 84 Sun D, Nassal M. Stable HepG2- and Huh7-based human hepatoma cell lines for efficient regulated expression of infectious hepatitis B virus. J Hepatol 2006; 45 (5) 636-645
- 85 Bardens A, Döring T, Stieler J, Prange R. Alix regulates egress of hepatitis B virus naked capsid particles in an ESCRT-independent manner. Cell Microbiol 2011; 13 (4) 602-619
- 86 Possehl C, Repp R, Heermann KH, Korec E, Uy A, Gerlich WH. Absence of free core antigen in anti-HBc negative viremic hepatitis B carriers. Arch Virol Suppl 1992; 4: 39-41
- 87 Eble BE, MacRae DR, Lingappa VR, Ganem D. Multiple topogenic sequences determine the transmembrane orientation of the hepatitis B surface antigen. Mol Cell Biol 1987; 7 (10) 3591-3601
- 88 Patzer EJ, Nakamura GR, Simonsen CC, Levinson AD, Brands R. Intracellular assembly and packaging of hepatitis B surface antigen particles occur in the endoplasmic reticulum. J Virol 1986; 58 (3) 884-892
- 89 Bruss V, Ganem D. Mutational analysis of hepatitis B surface antigen particle assembly and secretion. J Virol 1991; 65 (7) 3813-3820
- 90 Huovila AP, Eder AM, Fuller SD. Hepatitis B surface antigen assembles in a post-ER, pre-Golgi compartment. J Cell Biol 1992; 118 (6) 1305-1320
- 91 Patient R, Hourioux C, Sizaret PY, Trassard S, Sureau C, Roingeard P. Hepatitis B virus subviral envelope particle morphogenesis and intracellular trafficking. J Virol 2007; 81 (8) 3842-3851
- 92 Patient R, Hourioux C, Roingeard P. Morphogenesis of hepatitis B virus and its subviral envelope particles. Cell Microbiol 2009; 11 (11) 1561-1570