J Knee Surg 2014; 27(01): 067-076
DOI: 10.1055/s-0033-1348404
Original Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Is Magnetic Resonance Imaging Assessment of the Size of Articular Cartilage Defects Accurate?

Andrew B. Campbell
1   Department of Orthopaedics, The Ohio State University, Columbus, Ohio
,
Carmen E. Quatman
1   Department of Orthopaedics, The Ohio State University, Columbus, Ohio
,
Laura C. Schmitt
2   Department of Physical Therapy, The Ohio State University, Columbus, Ohio
,
Michael V. Knopp
3   Department of Radiology, The Ohio State University, Columbus, Ohio
,
David C. Flanigan
1   Department of Orthopaedics, The Ohio State University, Columbus, Ohio
4   Sports Medicine Center, The Ohio State University, Columbus, Ohio
› Author Affiliations
Further Information

Publication History

15 August 2012

04 May 2013

Publication Date:
24 July 2013 (online)

Abstract

The purpose of this study was to systematically review the literature relative to the following question: Is preoperative magnetic resonance imaging (MRI) an accurate instrument for the assessment of the size of knee articular cartilage defects compared with arthroscopy? A systematic search was performed in September 2011 using PubMed MEDLINE (from 1966), CINAHL (from 1982), SPORTDiscus (from 1985), SCOPUS (from 1996), and EMBASE (from 1974) databases. Four studies (one study of Level II and three studies of Level III) were identified that met the predetermined inclusion and exclusion criteria. The ability of MRI to preoperatively assess the size of cartilage lesions was highly variable. As a result of inconsistencies between imaging techniques, the methodological variability and shortcomings of the studies, and the limited amount of data available, a meta-analysis was not performed. There is some evidence that MRI is an accurate tool for preoperatively assessing the dimensions of articular cartilage defects. However, because of the heterogeneity of MRI sequences and the paucity of literature related to preoperative sizing, it is not possible to make definitive conclusions regarding the global clinical utility of MRI for guiding the selection of therapeutic strategies.

 
  • References

  • 1 Mandelbaum BR, Browne JE, Fu F , et al. Articular cartilage lesions of the knee. Am J Sports Med 1998; 26 (6) 853-861
  • 2 Piasecki DP, Spindler KP, Warren TA, Andrish JT, Parker RD. Intraarticular injuries associated with anterior cruciate ligament tear: findings at ligament reconstruction in high school and recreational athletes. An analysis of sex-based differences. Am J Sports Med 2003; 31 (4) 601-605
  • 3 Arendt E, Dick R. Knee injury patterns among men and women in collegiate basketball and soccer. NCAA data and review of literature. Am J Sports Med 1995; 23 (6) 694-701
  • 4 Kujala UM, Kettunen J, Paananen H , et al. Knee osteoarthritis in former runners, soccer players, weight lifters, and shooters. Arthritis Rheum 1995; 38 (4) 539-546
  • 5 Drawer S, Fuller CW. Propensity for osteoarthritis and lower limb joint pain in retired professional soccer players. Br J Sports Med 2001; 35 (6) 402-408
  • 6 Flanigan DC, Harris JD, Trinh TQ, Siston RA, Brophy RH. Prevalence of chondral defects in athletes' knees: a systematic review. Med Sci Sports Exerc 2010; 42 (10) 1795-1801
  • 7 Lohmander LS, Ostenberg A, Englund M, Roos H. High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum 2004; 50 (10) 3145-3152
  • 8 Golightly YM, Marshall SW, Callahan LF, Guskiewicz K. Early-onset arthritis in retired National Football League players. J Phys Act Health 2009; 6 (5) 638-643
  • 9 Buckwalter JA, Lohmander S. Operative treatment of osteoarthrosis. Current practice and future development. J Bone Joint Surg Am 1994; 76 (9) 1405-1418
  • 10 Englund M, Lohmander LS. Risk factors for symptomatic knee osteoarthritis fifteen to twenty-two years after meniscectomy. Arthritis Rheum 2004; 50 (9) 2811-2819
  • 11 Faber KJ, Dill JR, Amendola A, Thain L, Spouge A, Fowler PJ. Occult osteochondral lesions after anterior cruciate ligament rupture. Six-year magnetic resonance imaging follow-up study. Am J Sports Med 1999; 27 (4) 489-494
  • 12 Lohmander LS, Englund PM, Dahl LL, Roos EM. The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med 2007; 35 (10) 1756-1769
  • 13 Maffulli N, Longo UG, Gougoulias N, Loppini M, Denaro V. Long-term health outcomes of youth sports injuries. Br J Sports Med 2010; 44 (1) 21-25
  • 14 Mankin HJ. The response of articular cartilage to mechanical injury. J Bone Joint Surg Am 1982; 64 (3) 460-466
  • 15 Altman RD. Early management of osteoarthritis. Am J Manag Care 2010; 16 (Suppl Management): S41-S47
  • 16 Flanigan DC, Harris JD, Brockmeier PM, Siston RA. The effects of lesion size and location on subchondral bone contact in experimental knee articular cartilage defects in a bovine model. Arthroscopy 2010; 26 (12) 1655-1661
  • 17 Cole BJ, Pascual-Garrido C, Grumet RC. Surgical management of articular cartilage defects in the knee. J Bone Joint Surg Am 2009; 91 (7) 1778-1790
  • 18 Alford JW, Cole BJ. Cartilage restoration, part 2: techniques, outcomes, and future directions. Am J Sports Med 2005; 33 (3) 443-460
  • 19 Cain EL, Clancy WG. Treatment algorithm for osteochondral injuries of the knee. Clin Sports Med 2001; 20 (2) 321-342
  • 20 Clarke HD, Cushner F, Scott WN. Clinical algorithm for treatment of chondral injuries. In: Scott WN, , ed. Insall & Scott: Surgery of the Knee. 4th ed. Amsterdam, The Netherlands: Elsevier; 2005: 433-437
  • 21 Duchateau F, Vande Berg BC. MR imaging of the articular cartilage of the knee with arthroscopy as gold standard: assessment of methodological quality of clinical studies. Eur Radiol 2002; 12 (12) 2977-2981
  • 22 Oakley SP, Lassere MN. A critical appraisal of quantitative arthroscopy as an outcome measure in osteoarthritis of the knee. Semin Arthritis Rheum 2003; 33 (2) 83-105
  • 23 Oakley SP, Portek I, Szomor Z , et al. Arthroscopy — a potential “gold standard” for the diagnosis of the chondropathy of early osteoarthritis. Osteoarthritis Cartilage 2005; 13 (5) 368-378
  • 24 Quatman CE, Hettrich CM, Schmitt LC, Spindler KP. The clinical utility and diagnostic performance of magnetic resonance imaging for identification of early and advanced knee osteoarthritis: a systematic review. Am J Sports Med 2011; 39 (7) 1557-1568
  • 25 Harris JD, Siston RA, Pan X, Flanigan DC. Autologous chondrocyte implantation: a systematic review. J Bone Joint Surg Am 2010; 92 (12) 2220-2233
  • 26 Wright RW, Brand RA, Dunn W, Spindler KP. How to write a systematic review. Clin Orthop Relat Res 2007; 455: 23-29
  • 27 Bredella MA, Tirman PF, Peterfy CG , et al. Accuracy of T2-weighted fast spin-echo MR imaging with fat saturation in detecting cartilage defects in the knee: comparison with arthroscopy in 130 patients. AJR Am J Roentgenol 1999; 172 (4) 1073-1080
  • 28 Disler DG, McCauley TR, Wirth CR, Fuchs MD. Detection of knee hyaline cartilage defects using fat-suppressed three-dimensional spoiled gradient-echo MR imaging: comparison with standard MR imaging and correlation with arthroscopy. AJR Am J Roentgenol 1995; 165 (2) 377-382
  • 29 Disler DG. Fat-suppressed three-dimensional spoiled gradient-recalled MR imaging: assessment of articular and physeal hyaline cartilage. AJR Am J Roentgenol 1997; 169 (4) 1117-1123
  • 30 Duc SR, Pfirrmann CW, Schmid MR , et al. Articular cartilage defects detected with 3D water-excitation true FISP: prospective comparison with sequences commonly used for knee imaging. Radiology 2007; 245 (1) 216-223
  • 31 Galea A, Giuffre B, Dimmick S, Coolican MR, Parker DA. The accuracy of magnetic resonance imaging scanning and its influence on management decisions in knee surgery. Arthroscopy 2009; 25 (5) 473-480
  • 32 Irie K, Yamada T, Inoue K. A comparison of magnetic resonance imaging and arthroscopic evaluation of chondral lesions of the knee. Orthopedics 2000; 23 (6) 561-564
  • 33 Kijowski R, Blankenbaker DG, Klaers JL, Shinki K, De Smet AA, Block WF. Vastly undersampled isotropic projection steady-state free precession imaging of the knee: diagnostic performance compared with conventional MR. Radiology 2009; 251 (1) 185-194
  • 34 Kijowski R, Blankenbaker DG, Woods MA, Shinki K, De Smet AA, Reeder SB. 3.0-T evaluation of knee cartilage by using three-dimensional IDEAL GRASS imaging: comparison with fast spin-echo imaging. Radiology 2010; 255 (1) 117-127
  • 35 Kijowski R, Davis KW, Woods MA , et al. Knee joint: comprehensive assessment with 3D isotropic resolution fast spin-echo MR imaging—diagnostic performance compared with that of conventional MR imaging at 3.0 T. Radiology 2009; 252 (2) 486-495
  • 36 Kramer J, Recht MP, Imhof H, Stiglbaüer R, Engel A. Postcontrast MR arthrography in assessment of cartilage lesions. J Comput Assist Tomogr 1994; 18 (2) 218-224
  • 37 Li X, Yu C, Wu H , et al. Prospective comparison of 3D FIESTA versus fat-suppressed 3D SPGR MRI in evaluating knee cartilage lesions. Clin Radiol 2009; 64 (10) 1000-1008
  • 38 Potter HG, Linklater JM, Allen AA, Hannafin JA, Haas SB. Magnetic resonance imaging of articular cartilage in the knee. An evaluation with use of fast-spin-echo imaging. J Bone Joint Surg Am 1998; 80 (9) 1276-1284
  • 39 Vallotton JA, Meuli RA, Leyvraz PF, Landry M. Comparison between magnetic resonance imaging and arthroscopy in the diagnosis of patellar cartilage lesions: a prospective study. Knee Surg Sports Traumatol Arthrosc 1995; 3 (3) 157-162
  • 40 von Engelhardt LV, Kraft CN, Pennekamp PH, Schild HH, Schmitz A, von Falkenhausen M. The evaluation of articular cartilage lesions of the knee with a 3-Tesla magnet. Arthroscopy 2007; 23 (5) 496-502
  • 41 Kijowski R, Blankenbaker DG, Woods M, Del Rio AM, De Smet AA, Reeder SB. Clinical usefulness of adding 3D cartilage imaging sequences to a routine knee MR protocol. AJR Am J Roentgenol 2011; 196 (1) 159-167
  • 42 Bachmann GF, Basad E, Rauber K, Damian MS, Rau WS. Degenerative joint disease on MRI and physical activity: a clinical study of the knee joint in 320 patients. Eur Radiol 1999; 9 (1) 145-152
  • 43 Brown TR, Quinn SF. Evaluation of chondromalacia of the patellofemoral compartment with axial magnetic resonance imaging. Skeletal Radiol 1993; 22 (5) 325-328
  • 44 Gagliardi JA, Chung EM, Chandnani VP , et al. Detection and staging of chondromalacia patellae: relative efficacies of conventional MR imaging, MR arthrography, and CT arthrography. AJR Am J Roentgenol 1994; 163 (3) 629-636
  • 45 Glückert K, Kladny B, Blank-Schäl A, Hofmann G. MRI of the knee joint with a 3-D gradient echo sequence. Equivalent to diagnostic arthroscopy?. Arch Orthop Trauma Surg 1992; 112 (1) 5-14
  • 46 Jungius KP, Schmid MR, Zanetti M, Hodler J, Koch P, Pfirrmann CW. Cartilaginous defects of the femorotibial joint: accuracy of coronal short inversion time inversion-recovery MR sequence. Radiology 2006; 240 (2) 482-488
  • 47 Kijowski R, Blankenbaker DG, Davis KW, Shinki K, Kaplan LD, De Smet AA. Comparison of 1.5- and 3.0-T MR imaging for evaluating the articular cartilage of the knee joint. Radiology 2009; 250 (3) 839-848
  • 48 Lee SH, Suh JS, Cho J, Kim SJ, Kim SJ. Evaluation of chondromalacia of the patella with axial inversion recovery-fast spin-echo imaging. J Magn Reson Imaging 2001; 13 (3) 412-416
  • 49 Macarini L, Murrone M, Marini S, Mariano M, Zaccheo N, Moretti B. MR in the study of knee cartilage pathologies: influence of location and grade on the effectiveness of the method. Radiol Med (Torino) 2003; 105 (4) 296-307
  • 50 Mohr A. The value of water-excitation 3D FLASH and fat-saturated PDw TSE MR imaging for detecting and grading articular cartilage lesions of the knee. Skeletal Radiol 2003; 32 (7) 396-402
  • 51 Reiser MF, Bongartz G, Erlemann R , et al. Magnetic resonance in cartilaginous lesions of the knee joint with three-dimensional gradient-echo imaging. Skeletal Radiol 1988; 17 (7) 465-471
  • 52 Schmid MR, Pfirrmann CW, Koch P, Zanetti M, Kuehn B, Hodler J. Imaging of patellar cartilage with a 2D multiple-echo data image combination sequence. AJR Am J Roentgenol 2005; 184 (6) 1744-1748
  • 53 Sonin AH, Pensy RA, Mulligan ME, Hatem S. Grading articular cartilage of the knee using fast spin-echo proton density-weighted MR imaging without fat suppression. AJR Am J Roentgenol 2002; 179 (5) 1159-1166
  • 54 Wong S, Steinbach L, Zhao J, Stehling C, Ma CB, Link TM. Comparative study of imaging at 3.0 T versus 1.5 T of the knee. Skeletal Radiol 2009; 38 (8) 761-769
  • 55 Figueroa D, Calvo R, Vaisman A, Carrasco MA, Moraga C, Delgado I. Knee chondral lesions: incidence and correlation between arthroscopic and magnetic resonance findings. Arthroscopy 2007; 23 (3) 312-315
  • 56 Gold GE, Fuller SE, Hargreaves BA, Stevens KJ, Beaulieu CF. Driven equilibrium magnetic resonance imaging of articular cartilage: initial clinical experience. J Magn Reson Imaging 2005; 21 (4) 476-481
  • 57 Gückel C, Jundt G, Schnabel K, Gächter A. Spin-echo and 3D gradient-echo imaging of the knee joint: a clinical and histopathological comparison. Eur J Radiol 1995; 21 (1) 25-33
  • 58 Halbrecht JL, Jackson DW. Office arthroscopy: a diagnostic alternative. Arthroscopy 1992; 8 (3) 320-326
  • 59 Handelberg F, Shahabpour M, Casteleyn PP. Chondral lesions of the patella evaluated with computed tomography, magnetic resonance imaging, and arthroscopy. Arthroscopy 1990; 6 (1) 24-29
  • 60 Heron CW, Calvert PT. Three-dimensional gradient-echo MR imaging of the knee: comparison with arthroscopy in 100 patients. Radiology 1992; 183 (3) 839-844
  • 61 Huegli RW, Moelleken SM, Stork A , et al. MR imaging of post-traumatic articular cartilage injuries confined to the femoral trochlea. Arthroscopic correlation and clinical significance. Eur J Radiol 2005; 53 (1) 90-95
  • 62 Kuikka PI, Böstman OM, Kiuru MJ, Salminen ST, Mikkola S, Pihlajamäki HK. One screening magnetic resonance imaging sequence in evaluation of chondral and meniscal lesions of the knee - a pilot study. Open Orthop J 2008; 2: 19-22
  • 63 Lee SY, Jee WH, Kim SK, Koh IJ, Kim JM. Differentiation between grade 3 and grade 4 articular cartilage defects of the knee: fat-suppressed proton density-weighted versus fat-suppressed three-dimensional gradient-echo MRI. Acta Radiol 2010; 51 (4) 455-461
  • 64 Levy AS, Lohnes J, Sculley S, LeCroy M, Garrett W. Chondral delamination of the knee in soccer players. Am J Sports Med 1996; 24 (5) 634-639
  • 65 Lundberg M, Odensten M, Thuomas KA, Messner K. The diagnostic validity of magnetic resonance imaging in acute knee injuries with hemarthrosis. A single-blinded evaluation in 69 patients using high-field MRI before arthroscopy. Int J Sports Med 1996; 17 (3) 218-222
  • 66 Mori R, Ochi M, Sakai Y, Adachi N, Uchio Y. Clinical significance of magnetic resonance imaging (MRI) for focal chondral lesions. Magn Reson Imaging 1999; 17 (8) 1135-1140
  • 67 Nakanishi K, Inoue M, Harada K , et al. Subluxation of the patella: evaluation of patellar articular cartilage with MR imaging. Br J Radiol 1992; 65 (776) 662-667
  • 68 Nikolaou VS, Chronopoulos E, Savvidou C , et al. MRI efficacy in diagnosing internal lesions of the knee: a retrospective analysis. J Trauma Manag Outcomes 2008; 2 (1) 4
  • 69 Nojiri T, Watanabe N, Namura T , et al. Utility of delayed gadolinium-enhanced MRI (dGEMRIC) for qualitative evaluation of articular cartilage of patellofemoral joint. Knee Surg Sports Traumatol Arthrosc 2006; 14 (8) 718-723
  • 70 Ochi M, Sumen Y, Kanda T, Ikuta Y, Itoh K. The diagnostic value and limitation of magnetic resonance imaging on chondral lesions in the knee joint. Arthroscopy 1994; 10 (2) 176-183
  • 71 Rose PM, Demlow TA, Szumowski J, Quinn SF. Chondromalacia patellae: fat-suppressed MR imaging. Radiology 1994; 193 (2) 437-440
  • 72 Speer KP, Spritzer CE, Goldner JL, Garrett Jr WE. Magnetic resonance imaging of traumatic knee articular cartilage injuries. Am J Sports Med 1991; 19 (4) 396-402
  • 73 Spiers AS, Meagher T, Ostlere SJ, Wilson DJ, Dodd CA. Can MRI of the knee affect arthroscopic practice? A prospective study of 58 patients. J Bone Joint Surg Br 1993; 75 (1) 49-52
  • 74 Suh JS, Cho JH, Shin KH, Kim SJ. Chondromalacia of the knee: evaluation with a fat-suppression three-dimensional SPGR imaging after intravenous contrast injection. J Magn Reson Imaging 1996; 6 (6) 884-888
  • 75 von Engelhardt LV, Lahner M, Klussmann A , et al. Arthroscopy vs. MRI for a detailed assessment of cartilage disease in osteoarthritis: diagnostic value of MRI in clinical practice. BMC Musculoskelet Disord 2010; 11: 75
  • 76 Yoshioka H, Stevens K, Hargreaves BA , et al. Magnetic resonance imaging of articular cartilage of the knee: comparison between fat-suppressed three-dimensional SPGR imaging, fat-suppressed FSE imaging, and fat-suppressed three-dimensional DEFT imaging, and correlation with arthroscopy. J Magn Reson Imaging 2004; 20 (5) 857-864
  • 77 Ali SA, Helmer R, Terk MR. Analysis of the patellofemoral region on MRI: association of abnormal trochlear morphology with severe cartilage defects. AJR Am J Roentgenol 2010; 194 (3) 721-727
  • 78 McNickle AG, Provencher MT, Cole BJ. Overview of existing cartilage repair technology. Sports Med Arthrosc 2008; 16 (4) 196-201
  • 79 Bachmann G, Heinrichs C, Jürgensen I, Rominger M, Scheiter A, Rau WS. [Comparison of different MRT techniques in the diagnosis of degenerative cartilage diseases. In vitro study of 50 joint specimens of the knee at T1.5]. Rofo 1997; 166 (5) 429-436
  • 80 Ficat RP, Philippe J, Hungerford DS. Chondromalacia patellae: a system of classification. Clin Orthop Relat Res 1979; (144) 55-62
  • 81 Noyes FR, Stabler CL. A system for grading articular cartilage lesions at arthroscopy. Am J Sports Med 1989; 17 (4) 505-513
  • 82 Outerbridge RE. The etiology of chondromalacia patellae. J Bone Joint Surg Br 1961; 43-B: 752-757
  • 83 Shahriaree H. Chondromalacia. Contemp Orthop 1985; 11: 27-39
  • 84 Recht MP, Piraino DW, Paletta GA, Schils JP, Belhobek GH. Accuracy of fat-suppressed three-dimensional spoiled gradient-echo FLASH MR imaging in the detection of patellofemoral articular cartilage abnormalities. Radiology 1996; 198 (1) 209-212
  • 85 Brittberg M, Winalski CS. Evaluation of cartilage injuries and repair. J Bone Joint Surg Am 2003; 85-A (Suppl. 02) 58-69
  • 86 Hardy PA, Nammalwar P, Kuo S. Measuring the thickness of articular cartilage from MR images. J Magn Reson Imaging 2001; 13 (1) 120-126
  • 87 Chang CY, Huang AJ. MR of articular cartilage lesions of the knee. Appl Radiol 2011; 40 (9) 5-13
  • 88 Gomoll AH, Yoshioka H, Watanabe A, Dunn JC, Minas T. Preoperative measurement of cartilage defects by MRI underestimates lesion size. Cartilage. 2011; 2: 389-393
  • 89 Hayter C, Potter H. Magnetic resonance imaging of cartilage repair techniques. J Knee Surg 2011; 24 (4) 225-240
  • 90 Hartley KG, Damon BM, Patterson GT, Long JH, Holt GE. MRI techniques: a review and update for the orthopaedic surgeon. J Am Acad Orthop Surg 2012; 20 (12) 775-787
  • 91 Crema MD, Roemer FW, Marra MD , et al. Articular cartilage in the knee: current MR imaging techniques and applications in clinical practice and research. Radiographics 2011; 31 (1) 37-61