Subscribe to RSS
DOI: 10.1055/s-0033-1348499
The Structure and Rearrangements of a Complete Polyketide Synthase Module During its Catalytic Cycle
Polyketide natural products constitute a broad class of compounds with diverse structural features and biological activities. Their biosynthetic machinery, represented by type I polyketide synthases, has an architecture in which successive modules catalyze two-carbon linear extensions and keto group processing reactions on intermediates covalently tethered to carrier domains. We employed electron cryo-microscopy to visualize a full-length module and determine high-resolution 3D reconstructions that revealed a totally unexpected architecture compared to the homologous dimeric mammalian fatty acid synthase. A single reaction chamber provides access to all catalytic sites for the intra-module carrier domain. In contrast, the carrier from the preceding module uses a separate entrance outside the reaction chamber to deliver the upstream polyketide intermediate for subsequent extension and modification. This study reveals for the first time the structural basis for both intra-modular and inter-modular substrate transfer in polyketide synthases, and establishes a new model for molecular dissection of these multifunctional enzyme systems.
In a parallel effort we determined sub-nanometer resolution electron cryo-microscopy (cryo-EM) structures of a full-length PKS module in three key biochemical states of its catalytic cycle. Each biochemical state was confirmed by bottom-up liquid chromatography Fourier transform ion cyclotron resonance mass spectrometry (LC/FT-ICR MS). The ACP domain is differentially and precisely positioned after polyketide chain substrate loading on the active site of KS, after extended β-keto-intermediate formation, and after β-hydroxy product generation. The structures reveal the ACP dynamics for sequential binding to catalytic domains within the reaction chamber, and how the ACP positions the elongated and processed polyketide substrate for transfer to the next module in the PKS pathway. During the enzymatic cycle the KR domain undergoes dramatic conformational rearrangements that enable optimal positioning for reductive processing of the ACP-bound polyketide chain elongation intermediate. These findings have crucial implications for the design of functional PKS modules and for the engineering of pharmacologically relevant PKS pathways.