Semin Thromb Hemost 2013; 39(06): 596-606
DOI: 10.1055/s-0033-1348948
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Congenital Prothrombin Deficiency: An Update

Stefano Lancellotti
1   Department of Medical Sciences, Haemostasis and Thrombosis Service, Catholic University School of Medicine, Rome, Italy
,
Maria Basso
1   Department of Medical Sciences, Haemostasis and Thrombosis Service, Catholic University School of Medicine, Rome, Italy
,
Raimondo De Cristofaro
1   Department of Medical Sciences, Haemostasis and Thrombosis Service, Catholic University School of Medicine, Rome, Italy
› Author Affiliations
Further Information

Publication History

Publication Date:
12 July 2013 (online)

Abstract

Prothrombin (factor II [FII]) deficiency is a rare inherited coagulation disorder, having a prevalence of approximately 1 in 2,000,000. Two phenotypes can be distinguished: (1) true hypoprothrombinemia (type I deficiency), characterized by concomitantly low levels of the zymogen antigen; and (2) dysprothrombinemia (type II deficiency), characterized by the normal or near-normal synthesis of a dysfunctional protein. In the latter case, recent studies showed that particular mutations in the catalytic domain of active thrombin can even impair the enzyme interaction with antithrombin, favoring thromboembolic diseases. In some cases, hypoprothrombinemia associated with dysprothrombinemia was also described in compound heterozygous defects. Prothrombin is essential for the development of mammalian organisms. No living patient with undetectable plasma prothrombin has been reported to date. Prothrombin is encoded by a ≈21 kb gene located on chromosome 11 and containing 14 exons. Thirty-nine different mutations have been identified and characterized in prothrombin deficiency. Many of these are present in the catalytic site, whereas some involve regulatory domains, such as the anion-binding exosite I, the Na+-binding loop, and the light A-chain. Most hypoprothrombinemia-associated mutations are missense, but nonsense mutations leading to stop codons and one single nucleotide deletion have also been identified. Finally, recent developments in the therapy of congenital prothrombin deficiency are presented and discussed.

 
  • References

  • 1 Lancellotti S, De Cristofaro R. Congenital prothrombin deficiency. Semin Thromb Hemost 2009; 35 (4) 367-381
  • 2 Barnhart MI. Cellular site for prothrombin synthesis. Am J Physiol 1960; 199: 360-366
  • 3 Mosesson MW. Fibrinogen and fibrin structure and functions. J Thromb Haemost 2005; 3 (8) 1894-1904
  • 4 Esmon CT. Regulation of blood coagulation. Biochim Biophys Acta 2000; 1477 (1-2) 349-360
  • 5 De Cristofaro R, De Candia E, Landolfi R, Rutella S, Hall SW. Structural and functional mapping of the thrombin domain involved in the binding to the platelet glycoprotein Ib. Biochemistry 2001; 40 (44) 13268-13273
  • 6 De Candia E, Hall SW, Rutella S, Landolfi R, Andrews RK, De Cristofaro R. Binding of thrombin to glycoprotein Ib accelerates the hydrolysis of Par-1 on intact platelets. J Biol Chem 2001; 276 (7) 4692-4698
  • 7 Segers K, Dahlbäck B, Bock PE, Tans G, Rosing J, Nicolaes GA. The role of thrombin exosites I and II in the activation of human coagulation factor V. J Biol Chem 2007; 282 (47) 33915-33924
  • 8 Myles T, Yun TH, Leung LL. Structural requirements for the activation of human factor VIII by thrombin. Blood 2002; 100 (8) 2820-2826
  • 9 Isetti G, Maurer MC. Employing mutants to study thrombin residues responsible for factor XIII activation peptide recognition: a kinetic study. Biochemistry 2007; 46 (9) 2444-2452
  • 10 Bar-Shavit R, Kahn AJ, Mann KG, Wilner GD. Identification of a thrombin sequence with growth factor activity on macrophages. Proc Natl Acad Sci U S A 1986; 83 (4) 976-980
  • 11 Zetter BR, Antoniades HN. Stimulation of human vascular endothelial cell growth by a platelet-derived growth factor and thrombin. J Supramol Struct 1979; 11 (3) 361-370
  • 12 Seino Y, Ikeda U, Ikeda M , et al. Interleukin 6 gene transcripts are expressed in human atherosclerotic lesions. Cytokine 1994; 6 (1) 87-91
  • 13 Fenton II JW. Regulation of thrombin generation and functions. Semin Thromb Hemost 1988; 14 (3) 234-240
  • 14 Siller-Matula JM, Schwameis M, Blann A, Mannhalter C, Jilma B. Thrombin as a multi-functional enzyme. Focus on in vitro and in vivo effects. Thromb Haemost 2011; 106 (6) 1020-1033
  • 15 Degen SJ, Davie EW. Nucleotide sequence of the gene for human prothrombin. Biochemistry 1987; 26 (19) 6165-6177
  • 16 Royle NJ, Irwin DM, Koschinsky ML, MacGillivray RT, Hamerton JL. Human genes encoding prothrombin and ceruloplasmin map to 11p11-q12 and 3q21-24, respectively. Somat Cell Mol Genet 1987; 13 (3) 285-292
  • 17 Akhavan S, Mannucci PM, Lak M , et al. Identification and three-dimensional structural analysis of nine novel mutations in patients with prothrombin deficiency. Thromb Haemost 2000; 84 (6) 989-997
  • 18 Peyvandi F, Duga S, Akhavan S, Mannucci PM. Rare coagulation deficiencies. Haemophilia 2002; 8 (3) 308-321
  • 19 Mannucci PM, Duga S, Peyvandi F. Recessively inherited coagulation disorders. Blood 2004; 104 (5) 1243-1252
  • 20 Acharya SS, Coughlin A, Dimichele DM. North American Rare Bleeding Disorder Study Group. Rare Bleeding Disorder Registry: deficiencies of factors II, V, VII, X, XIII, fibrinogen and dysfibrinogenemias. J Thromb Haemost 2004; 2 (2) 248-256
  • 21 Girolami A, Scarano L, Saggiorato G, Girolami B, Bertomoro A, Marchiori A. Congenital deficiencies and abnormalities of prothrombin. Blood Coagul Fibrinolysis 1998; 9 (7) 557-569
  • 22 Peyvandi F, Cattaneo M, Inbal A, De Moerloose P, Spreafico M. Rare bleeding disorders. Haemophilia 2008; 14 (Suppl. 03) 202-210
  • 23 Sun WY, Witte DP, Degen JL , et al. Prothrombin deficiency results in embryonic and neonatal lethality in mice. Proc Natl Acad Sci U S A 1998; 95 (13) 7597-7602
  • 24 Xue J, Wu Q, Westfield LA , et al. Incomplete embryonic lethality and fatal neonatal hemorrhage caused by prothrombin deficiency in mice. Proc Natl Acad Sci U S A 1998; 95 (13) 7603-7607
  • 25 Iwahana H, Yoshimoto K, Shigekiyo T, Shirakami A, Saito S, Itakura M. Molecular and genetic analysis of a compound heterozygote for dysprothrombinemia of prothrombin Tokushima and hypoprothrombinemia. Am J Hum Genet 1992; 51 (6) 1386-1395
  • 26 Wang W, Fu Q, Zhou R , et al. Prothrombin Shanghai: hypoprothrombinaemia caused by substitution of Gla29 by Gly. Haemophilia 2004; 10 (1) 94-97
  • 27 Lanchantin GF, Hart DW, Friedmann JA, Saavedra NV, Mehl JW. Amino acid composition of human plasma prothrombin. J Biol Chem 1968; 243 (20) 5479-5485
  • 28 Shapiro SS, McCord S. Prothrombin. Prog Hemost Thromb 1978; 4: 177-209
  • 29 Vu TK, Hung DT, Wheaton VI, Coughlin SR. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 1991; 64 (6) 1057-1068
  • 30 Vouret-Craviari V, Boquet P, Pouysségur J, Van Obberghen-Schilling E. Regulation of the actin cytoskeleton by thrombin in human endothelial cells: role of Rho proteins in endothelial barrier function. Mol Biol Cell 1998; 9 (9) 2639-2653
  • 31 Schrör K, Bretschneider E, Fischer K , et al. Thrombin receptors in vascular smooth muscle cells - function and regulation by vasodilatory prostaglandins. Thromb Haemost 2010; 103 (5) 884-890
  • 32 Chung S, Kim JE, Park S, Han KS, Kim HK. Neutrophil and monocyte activation markers have prognostic impact in disseminated intravascular coagulation: in vitro effect of thrombin on monocyte CD163 shedding. Thromb Res 2011; 127 (5) 450-456
  • 33 Pou J, Rebollo A, Piera L , et al. Tissue factor pathway inhibitor 2 is induced by thrombin in human macrophages. Biochim Biophys Acta 2011; 1813 (6) 1254-1260
  • 34 Hurley A, Smith M, Karpova T , et al. Enhanced effector function of CD8+ T Cells from healthy controls and HIV-infected patients occurs through thrombin activation of protease-activated receptor 1. J Infect Dis 2013; 207 (4) 638-650
  • 35 Bai KJ, Chen BC, Pai HC , et al. Thrombin-induced CCN2 expression in human lung fibroblasts requires the c-Src/JAK2/STAT3 pathway. J Leukoc Biol 2013; 93 (1) 101-112
  • 36 Dugina TN, Kiseleva EV, Glusa E, Strukova SM. Activation of mast cells induced by agonists of proteinase-activated receptors under normal conditions and during acute inflammation in rats. Eur J Pharmacol 2003; 471 (2) 141-147
  • 37 Lee H, Hamilton JR. Physiology, pharmacology, and therapeutic potential of protease-activated receptors in vascular disease. Pharmacol Ther 2012; 134 (2) 246-259
  • 38 Coughlin SR. Protease-activated receptors in hemostasis, thrombosis and vascular biology. J Thromb Haemost 2005; 3 (8) 1800-1814
  • 39 Dihanich M, Kaser M, Reinhard E, Cunningham D, Monard D. Prothrombin mRNA is expressed by cells of the nervous system. Neuron 1991; 6 (4) 575-581
  • 40 Kim SR, Chung ES, Bok E , et al. Prothrombin kringle-2 induces death of mesencephalic dopaminergic neurons in vivo and in vitro via microglial activation. J Neurosci Res 2010; 88 (7) 1537-1548
  • 41 Peyvandi F, Di Michele D, Bolton-Maggs PH, Lee CA, Tripodi A, Srivastava A. Project on Consensus Definitions in Rare Bleeeding Disorders of the Factor VIII/Factor IX Scientific and Standardisation Committee of the International Society on Thrombosis and Haemostasis. Classification of rare bleeding disorders (RBDs) based on the association between coagulant factor activity and clinical bleeding severity. J Thromb Haemost 2012; 10 (9) 1938-1943
  • 42 Akhavan S, De Cristofaro R, Peyvandi F, Lavoretano S, Landolfi R, Mannucci PM. Molecular and functional characterization of a natural homozygous Arg67His mutation in the prothrombin gene of a patient with a severe procoagulant defect contrasting with a mild hemorrhagic phenotype. Blood 2002; 100 (4) 1347-1353
  • 43 Miyata T, Aruga R, Umeyama H, Bezeaud A, Guillin MC, Iwanaga S. Prothrombin Salakta: substitution of glutamic acid-466 by alanine reduces the fibrinogen clotting activity and the esterase activity. Biochemistry 1992; 31 (33) 7457-7462
  • 44 Morishita E, Saito M, Kumabashiri I, Asakura H, Matsuda T, Yamaguchi K. Prothrombin Himi: a compound heterozygote for two dysfunctional prothrombin molecules (Met-337—>Thr and Arg-388—>His). Blood 1992; 80 (9) 2275-2280
  • 45 Di Cera E, Dang QD, Ayala YM. Molecular mechanisms of thrombin function. Cell Mol Life Sci 1997; 53 (9) 701-730
  • 46 Mota L, Ghosh K, Shetty S. Second trimester antenatal diagnosis in rare coagulation factor deficiencies. J Pediatr Hematol Oncol 2007; 29 (3) 137-139
  • 47 Van Creveld S. Congenital idiopathic hypoprothrombinemia. Acta Paediatr Suppl 1954; 43 (100) 245-255
  • 48 Miyawaki Y, Suzuki A, Fujita J , et al. Thrombosis from a prothrombin mutation conveying antithrombin resistance. N Engl J Med 2012; 366 (25) 2390-2396
  • 49 De Cristofaro R, Akhavan S, Altomare C, Carotti A, Peyvandi F, Mannucci PM. A natural prothrombin mutant reveals an unexpected influence of A-chain structure on the activity of human alpha-thrombin. J Biol Chem 2004; 279 (13) 13035-13043
  • 50 De Cristofaro R, Carotti A, Akhavan S , et al. The natural mutation by deletion of Lys9 in the thrombin A-chain affects the pKa value of catalytic residues, the overall enzyme's stability and conformational transitions linked to Na+ binding. FEBS J 2006; 273 (1) 159-169
  • 51 Liu CC, Brustad E, Liu W, Schultz PG. Crystal structure of a biosynthetic sulfo-hirudin complexed to thrombin. J Am Chem Soc 2007; 129 (35) 10648-10649
  • 52 Napolitano M, Mariani G, Lapecorella M. Hereditary combined deficiency of the vitamin K-dependent clotting factors. Orphanet J Rare Dis 2010; 5: 21
  • 53 Oldenburg J, von Brederlow B, Fregin A , et al. Congenital deficiency of vitamin K dependent coagulation factors in two families presents as a genetic defect of the vitamin K-epoxide-reductase-complex. Thromb Haemost 2000; 84 (6) 937-941
  • 54 Soute BA, Ulrich MM, Watson AD, Maddison JE, Ebberink RH, Vermeer C. Congenital deficiency of all vitamin K-dependent blood coagulation factors due to a defective vitamin K-dependent carboxylase in Devon Rex cats. Thromb Haemost 1992; 68 (5) 521-525
  • 55 McMillan CW, Roberts HR. Congenital combined deficiency of coagulation factors II, VII, IX and X. Report of a case. N Engl J Med 1966; 274 (23) 1313-1315
  • 56 Brenner B, Tavori S, Zivelin A , et al. Hereditary deficiency of all vitamin K-dependent procoagulants and anticoagulants. Br J Haematol 1990; 75 (4) 537-542
  • 57 Lechler E. Use of prothrombin complex concentrates for prophylaxis and treatment of bleeding episodes in patients with hereditary deficiency of prothrombin, factor VII, factor X, protein C protein S, or protein Z. Thromb Res 1999; 95 (4) (Suppl. 01) S39-S50
  • 58 Owen Jr CA, Henriksen RA, McDuffie FC, Mann KG. Prothrombin Quick. A newly identified dysprothrombinemia. Mayo Clin Proc 1978; 53 (1) 29-33
  • 59 Gill FM, Shapiro SS, Schwartz E. Severe congenital hypoprothrombinemia. J Pediatr 1978; 93 (2) 264-266
  • 60 Ostermann H, Haertel S, Knaub S, Kalina U, Jung K, Pabinger I. Pharmacokinetics of Beriplex P/N prothrombin complex concentrate in healthy volunteers. Thromb Haemost 2007; 98 (4) 790-797
  • 61 Bjorkman S, Collins P. Measurement of factor VIII pharmacokinetics in routine clinical practice. J Thromb Haemost 2013; 11 (1) 180-182
  • 62 Pabinger I, Brenner B, Kalina U, Knaub S, Nagy A, Ostermann H. Beriplex P/N Anticoagulation Reversal Study Group. Prothrombin complex concentrate (Beriplex P/N) for emergency anticoagulation reversal: a prospective multinational clinical trial. J Thromb Haemost 2008; 6 (4) 622-631
  • 63 Bode W, Turk D, Karshikov A. The refined 1.9-A X-ray crystal structure of D-Phe-Pro-Arg chloromethylketone-inhibited human alpha-thrombin: structure analysis, overall structure, electrostatic properties, detailed active-site geometry, and structure-function relationships. Protein Sci 1992; 1 (4) 426-471
  • 64 Girolami A, Santarossa L, Scarparo P, Candeo N, Girolami B. True congenital prothrombin deficiency due to a 'new' mutation in the pre-propeptide (ARG-39 GLN). Acta Haematol 2008; 120 (2) 82-86
  • 65 Wong AY, Hewitt J, Clarke BJ , et al. Severe prothrombin deficiency caused by prothrombin-Edmonton (R-4Q) combined with a previously undetected deletion. J Thromb Haemost 2006; 4 (12) 2623-2628
  • 66 Strijks E, Poort SR, Renier WO, Gabreëls FJ, Bertina RM. Hereditary prothrombin deficiency presenting as intracranial haematoma in infancy. Neuropediatrics 1999; 30 (6) 320-324
  • 67 Poort SR, Michiels JJ, Reitsma PH, Bertina RM. Homozygosity for a novel missense mutation in the prothrombin gene causing a severe bleeding disorder. Thromb Haemost 1994; 72 (6) 819-824
  • 68 Sun WY, Ruiz-Saez A, Burkart MC, Bosch N, Degen SJ. Prothrombin carora: hypoprothrombinaemia caused by substitution of Tyr-44 by Cys. Br J Haematol 1999; 105 (3) 670-672
  • 69 Kulkarni B, Kanakia S, Ghosh K, Shetty S. Prothrombin Mumbai causes severe prothrombin deficiency due to a novel Cys90Ser mutation. Ann Hematol 2012; 91 (10) 1667-1668
  • 70 Poort SR, Landolfi R, Bertina RM. Compound heterozygosity for two novel missense mutations in the prothrombin gene in a patient with a severe bleeding tendency. Thromb Haemost 1997; 77 (4) 610-615
  • 71 Board PG, Shaw DC. Determination of the amino acid substitution in human prothrombin type 3 (157 Glu leads to Lys) and the localization of a third thrombin cleavage site. Br J Haematol 1983; 54 (2) 245-254
  • 72 Miyata T, Zheng YZ, Kato A, Kato H. A point mutation (Arg271→Cys) of a homozygote for dysfunctional prothrombin, prothrombin Obihiro, which has a region of high sequence variability. Br J Haematol 1995; 90 (3) 688-692
  • 73 James HL, Kim DJ, Zheng DQ, Girolami A. Prothrombin Padua I: incomplete activation due to an amino acid substitution at a factor Xa cleavage site. Blood Coagul Fibrinolysis 1994; 5 (5) 841-844
  • 74 François D, Chevreaud C, Vignon D, de Mazancourt P. Prothrombin Suresnes: a case of homozygous F299V mutation responsible for hypodysprothrombinemia. Haematologica 2006; 91 (3) 431-432
  • 75 Lefkowitz JB, Haver T, Clarke S , et al. The prothrombin Denver patient has two different prothrombin point mutations resulting in Glu-300→Lys and Glu-309→Lys substitutions. Br J Haematol 2000; 108 (1) 182-187
  • 76 Akhavan S, Rocha E, Zeinali S, Mannucci PM. Gly319 → arg substitution in the dysfunctional prothrombin Segovia. Br J Haematol 1999; 105 (3) 667-669
  • 77 Sun WY, Burkart MC, Holahan JR, Degen SJ. Prothrombin San Antonio: a single amino acid substitution at a factor Xa activation site (Arg320 to His) results in dysprothrombinemia. Blood 2000; 95 (2) 711-714
  • 78 Tamary H, Surrey S, Augustine J, Shalmon L, Schwartz E, Rappaport EF. Molecular analysis of a compound heterozygote for hypoprothrombinemia and dysprothrombinemia (-G 7248/7249 and ARG 340 TRP). Blood Coagul Fibrinolysis 1997; 8 (6) 337-343
  • 79 Jayandharan G, Viswabandya A, Baidya S , et al. Molecular genetics of hereditary prothrombin deficiency in Indian patients: identification of a novel Ala362 → Thr (Prothrombin Vellore 1) mutation. J Thromb Haemost 2005; 3 (7) 1446-1453
  • 80 Henriksen RA, Owen WG, Nesheim ME, Mann KG. Identification of a congenital dysthrombin, thrombin Quick. J Clin Invest 1980; 66 (5) 934-940
  • 81 O'Marcaigh AS, Nichols WL, Hassinger NL , et al. Genetic analysis and functional characterization of prothrombins Corpus Christi (Arg382-Cys), Dhahran (Arg271-His), and hypoprothrombinemia. Blood 1996; 88 (7) 2611-2618
  • 82 Girolami A, Coccheri S, Palareti G, Poggi M, Burul A, Cappellato G. Prothrombin Molise: a “new” congenital dysprothrombinemia, double heterozygosis with an abnormal prothrombin and “true” prothrombin deficiency. Blood 1978; 52 (1) 115-125
  • 83 Iwahana H, Yoshimoto K, Shigekiyo T, Shirakami A, Saito S, Itakura M. Detection of a single base substitution of the gene for prothrombin Tokushima. The application of PCR-SSCP for the genetic and molecular analysis of dysprothrombinemia. Int J Hematol 1992; 55 (1) 93-100
  • 84 Kling SJ, Jones KA, Rodgers GM. A second case of prothrombin Puerto Rico I in the United States. Am J Hematol 2007; 82 (7) 661-662
  • 85 Lefkowitz JB, Weller A, Nuss R, Santiago-Borrero PJ, Brown DL, Ortiz IR. A common mutation, Arg457—>Gln, links prothrombin deficiencies in the Puerto Rican population. J Thromb Haemost 2003; 1 (11) 2381-2388
  • 86 Stanchev H, Philips M, Villoutreix BO, Aksglaede L, Lethagen S, Thorsen S. Prothrombin deficiency caused by compound heterozygosity for two novel mutations in the prothrombin gene associated with a bleeding tendency. Thromb Haemost 2006; 95 (1) 195-198
  • 87 Henriksen RA, Dunham CK, Miller LD , et al. Prothrombin Greenville, Arg517—>Gln, identified in an individual heterozygous for dysprothrombinemia. Blood 1998; 91 (6) 2026-2031
  • 88 Sekine O, Sugo T, Ebisawa K , et al. Substitution of Gly-548 to Ala in the substrate binding pocket of prothrombin Perijá leads to the loss of thrombin proteolytic activity. Thromb Haemost 2002; 87 (2) 282-287
  • 89 Sun WY, Smirnow D, Jenkins ML, Degen SJ. Prothrombin Scranton: substitution of an amino acid residue involved in the binding of Na+ (LYS-556 to THR) leads to dysprothrombinemia. Thromb Haemost 2001; 85 (4) 651-654
  • 90 Henriksen RA, Mann KG. Substitution of valine for glycine-558 in the congenital dysthrombin thrombin Quick II alters primary substrate specificity. Biochemistry 1989; 28 (5) 2078-2082
  • 91 Poort SR, Njo KT, Vos HL, Bertina RM. Two novel mutations in the prothrombin gene cause severe bleeding in a compound heterozygous patient. Blood Coagul Fibrinolysis 1998; 9 (8) 761-764