Subscribe to RSS
DOI: 10.1055/s-0033-1350105
Quantitative 3D Micro-CT Imaging of Human Lung Tissue
Quantitative 3-D-Mikro-CT-Bildgebung von humanem LungengewebePublication History
17 December 2012
02 June 2013
Publication Date:
25 July 2013 (online)
Abstract
Purpose: To assess the feasibility of micro-CT for obtaining quantitative volumetric and morphologic information of changes in soft tissue, respiratory tracts and vascularization in fibrotic, emphysematous and non-diseased human lung specimens.
Materials and Methods: Specimens from autopsy or lung explantation with lung fibrosis of UIP pattern (n = 22) or centrilobular emphysema (n = 10) were scanned by micro-CT and compared to controls (n = 22). Imaging was performed subsequent to intravascular contrast enhancement for the assessment of the vascular volume fraction. The soft tissue and air fraction were quantified after the fixation of ventilated lungs followed by tissue contrast enhancement using osmium. Aiming an artifact-free 3 D reconstruction of lung acini, synchrotron-based micro-CT scans of specimens with emphysema (n = 5) and non-diseased tissue (n = 6) was performed. Micro-CT imaging was complemented by histology for the demonstration of comparable findings.
Results: Quantitative analysis showed a significant increase of the soft tissue fraction, equivalent to a decrease of the air fraction in fibrotic lungs compared to controls (p < 0.001) and a significant reduction of the vascular volume fraction compared to controls (p < 0.02). Specimens with emphysema demonstrated a significant increase of the air fraction with a decrease in soft tissue compared to controls (p < 0.001). 3 D reconstructions of lung acini worked successfully in non-diseased tissue but failed in fibrotic and emphysematous lungs.
Conclusion: Our findings indicate micro-CT’s technical feasibility to assess quantitative and morphological data from diseased and non-diseased human lung specimens.
Citation Format:
-
Kampschulte M, Schneider CR, Litzlbauer HD et al. Quantitative 3D Micro-CT Imaging of Human Lung Tissue. Fortschr Röntgenstr 2013; 185: 869 – 876
Zusammenfassung
Ziel: Ziel der Arbeit war es, anhand von Mikro-CT-Untersuchungen humaner Lungenproben quantitative und morphologische Informationen der Feinstruktur bei vorbestehender Fibrose und Emphysem im Vergleich zu nicht erkranktem Lungengewebe zu gewinnen.
Material und Methoden: Proben von Autopsie- sowie Explantationslungen mit gesicherter Fibrose (n = 22), zentrilobulärem Emphysem (n = 10) bzw. ohne pulmonale Vorerkrankung (n = 22) wurden untersucht. Die Proben wurden intravasal kontrastiert oder in ventilierter Stellung fixiert und mit Osmium kontrastiert. Der Gefäß-, Gewebe- und Luftanteil am Gesamtvolumen der untersuchten Proben wurde ermittelt. Zwecks artefaktfreier 3-D-Rekonstruktion einzelner Lungenazini wurden Proben mit Emphysem (n = 5) bzw. ohne Vorerkrankung (n = 6) im Synchrotron-Mikro-CT untersucht. Die Bildgebung wurde durch histologische Aufarbeitung der Proben ergänzt.
Ergebnisse: Für Proben mit gesicherter Fibrose zeigte sich im Vergleich zur Kontrollgruppe eine signifikante Zunahme der Gewebeanteile, begleitet von einer Reduktion belüfteter Areale (p < 0.001) sowie eine signifikante Abnahme der Gefäßanteile (p < 0.02). Proben mit vorbestehendem Emphysem zeigten eine signifikante Abnahme des Gewebeanteils bzw. eine Zunahme des Luftanteils am Gesamtvolumen (p < 0.001). Die 3-D-Rekonstruktion einzelner Lungenazini ließ sich erfolgreich in nicht erkranktem Lungenparenchym durchführen, versagte jedoch in der Bearbeitung von Daten der Emphysem- oder Fibroselungen.
Schlussfolgerung: Die Mikro-CT von Proben menschlichen Lungengewebes ist technisch durchführbar und liefert quantitative und morphologische Informationen für die Charakterisierung von Lungenpathologien im Vergleich zu nicht erkranktem Lungengewebe.
-
References
- 1 Bag S, Schambach SJ, Boll H et al. Aktueller Stand der Mikro-CT in der experimentellen Kleintierbildgebung. Fortschr Röntgenstr 2010; 182: 390-403
- 2 Jin GY, Bok SM, Han YM et al. Effectiveness of rosiglitazone on bleomycin-induced lung fibrosis: Assessed by micro-computed tomography and pathologic scores. Eur J Radiol 2011; 81: 1901-1906
- 3 Op Den Buijs J, Bajzer Z, Ritman EL. Branching morphology of the rat hepatic portal vein tree: a micro-CT study. Ann Biomed Eng 2006; 34: 1420-1428
- 4 Schulman J, Meyer-Lindenberg A, Goblet F et al. Phantomuntersuchungen an einem hochauflösenden CT zur Ex-vivo-Darstellung von degradierbaren Magnesiumimplantaten und simulierten periimplantären Knochenschichten in Kaninchentibiae. Fortschr Röntgenstr 2012; 184: 455-460
- 5 Litzlbauer HD, Korbel K, Kline TL et al. Synchrotron-based micro-CT imaging of the human lung acinus. Anat Rec (Hoboken) 2010; 293: 1607-1614
- 6 Litzlbauer HD, Neuhaeuser C, Moell A et al. Three-dimensional imaging and morphometric analysis of alveolar tissue from microfocal X-ray-computed tomography. Am J Physiol Lung Cell Mol Physiol 2006; 291: L535-L545
- 7 Watz H, Breithecker A, Rau WS et al. Micro-CT of the human lung: imaging of alveoli and virtual endoscopy of an alveolar duct in a normal lung and in a lung with centrilobular emphysema--initial observations. Radiology 2005; 236: 1053-1058
- 8 Langheinrich AC, Kampschulte M, Crossmann C et al. Role of computed tomography voxel size in detection and discrimination of calcium and iron deposits in atherosclerotic human coronary artery specimens. J Comput Assist Tomogr 2009; 33: 517-522
- 9 Langheinrich AC, Stolle C, Kampschulte M et al. Diagnostic Value of Ex-Vivo Three-Dimensional Micro-Computed Tomography Imaging of Primary Nonhematopoietic Human Bone Tumors: Osteosarcoma versus Chondrosarcoma. Acta Radiol 2008; 1-8
- 10 Langheinrich AC, Leithauser B, Greschus S et al. Acute rat lung injury: feasibility of assessment with micro-CT. Radiology 2004; 233: 165-171
- 11 Namati E, Thiesse J, Sieren JC et al. Longitudinal assessment of lung cancer progression in the mouse using in vivo micro-CT imaging. Med Phys 2010; 37: 4793-4805
- 12 Johnson KA. Imaging techniques for small animal imaging models of pulmonary disease: micro-CT. Toxicol Pathol 2007; 35: 59-64
- 13 Lee HJ, Goo JM, Kim NR et al. Semiquantitative measurement of murine bleomycin-induced lung fibrosis in in vivo and postmortem conditions using microcomputed tomography: correlation with pathologic scores--initial results. Invest Radiol 2008; 43: 453-460
- 14 Mittermayer C, Wybitul K, Rau WS et al. Standardized fixation of human lung for radiology and morphometry; Description of a “two chamber”-system with formaldehyde vapor inflation. Pathol Res Pract 1978; 162: 115-130
- 15 Nettum JA. Bronchoalveolar casting using formalin-fixed canine lungs and a low viscosity silicone rubber. Anat Rec 1993; 236: 408-410
- 16 Rau WS, Hauenstein K, Mittermayer C et al. A simple and rapid method for postmortem radiographic investigation of lung fine structure. Pathol Res Pract 1980; 170: 426-432
- 17 Rau WS, Hauenstein K, Volk P et al. Die röntgenologische Feinstruktur der Lunge. II. Gefrierhärtung isolierter Lungen in flüssigem Stickstoff Fortschr Röntgenstr 1980; 133: 400-405
- 18 McDonough JE, Yuan R, Suzuki M et al. Small-airway obstruction and emphysema in chronic obstructive pulmonary disease. N Engl J Med 2011; 365: 1567-1575
- 19 Hogg JC, McDonough JE, Sanchez PG et al. Micro-computed tomography measurements of peripheral lung pathology in chronic obstructive pulmonary disease. Proc Am Thorac Soc 2009; 6: 546-549
- 20 Ikura H, Shimizu K, Ikezoe J et al. In vitro evaluation of normal and abnormal lungs with ultra-high-resolution CT. J Thorac Imaging 2004; 19: 8-15
- 21 Keane MP, Arenberg DA, Lynch JP et al. The CXC chemokines, IL-8 and IP-10, regulate angiogenic activity in idiopathic pulmonary fibrosis. J Immunol 1997; 159: 1437-1443
- 22 Turner-Warwick M. Precapillary Systemic-Pulmonary Anastomoses. Thorax 1963; 18: 225-237
- 23 Ebina M, Shimizukawa M, Shibata N et al. Heterogeneous increase in CD34-positive alveolar capillaries in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2004; 169: 1203-1208
- 24 Coalson JJ. The ultrastructure of human fibrosing alveolitis. Virchows Arch A Pathol Anat Histol 1982; 395: 181-199
- 25 Gracey DR, Divertie MB, Brown AL et al. Alveolar-capillary membrane in idiopathic interstitial pulmonary fibrosis. Electron microscopic study of 14 cases. Am Rev Respir Dis 1968; 98: 16-21
- 26 Ebina M, Yaegashi H, Takahashi T et al. Distribution of smooth muscles along the bronchial tree. A morphometric study of ordinary autopsy lungs. Am Rev Respir Dis 1990; 141: 1322-1326
- 27 Jorgensen SM, Demirkaya O, Ritman EL. Three-dimensional imaging of vasculature and parenchyma in intact rodent organs with X-ray micro-CT. Am J Physiol 1998; 275: H1103-H1114
- 28 Kantor B, Kwon HM, Ritman EL et al. Images in Cardiology Imaging the coronary microcirculation: 3D micro-CT of coronary vasa vasorum. Int J Cardiovasc Intervent 1999; 2: 79
- 29 Langheinrich AC, Bohle RM, Breithecker A et al. Mikro-Computertomografie von Blutgefäßen parenchymatöser Organe und von Lungenalveolen. Fortschr Röntgenstr 2004; 176: 1219-1225
- 30 Ritman EL. Micro-computed tomography of the lungs and pulmonary-vascular system. Proc Am Thorac Soc 2005; 2: 477-480 , 501