Subscribe to RSS
DOI: 10.1055/s-0033-1350406
7 Tesla MR Imaging: Opportunities and Challenges
MRT bei 7 Tesla: Möglichkeiten und HerausforderungenPublication History
03 September 2012
08 July 2013
Publication Date:
30 August 2013 (online)
Abstract
The urge to increase magnetic field strength is driven by a number of potentially beneficial physical changes, possibly resulting in improved MR diagnostics. With the successful introduction of in-vivo ultra-high-field MR imaging, by means of 7 Tesla MRI, the focus of scientific research has been set on compiling different applications of brain and body imaging. This review presents an overview on the current status of 7 T MR imaging, investigating the opportunities as well as challenges associated with ultra-high-field MRI.
Citation Format:
• Umutlu L, Ladd ME, Forsting M et al. 7 Tesla MR Imaging: Opportunities and Challenges. Fortschr Röntgenstr 2014; 186: 121 – 129
Zusammenfassung
Die Steigerung der Magnetfeldstärke geht mit einer Reihe von potenziell vorteilhaften physikalischen Veränderungen einher, die zu einer verbesserten Diagnostik von Erkrankungen führen können. Mit der erfolgreichen Einführung der in vivo 7 Tesla Magnetresonanztomografie wurde der wissenschaftliche Fokus auf die Etablierung verschiedener neuro- und allgemeinradiologischer Anwendungsfelder gelegt. Diese Übersichtsarbeit gibt einen Überblick über den aktuellen Stand der 7 Tesla MRT, verbunden mit dem Ziel die Möglichkeiten und Grenzen der Ultrahochfeldbildgebung aufzuzeigen.
-
References
- 1 Robitaille PML, Abduljalil AM, Kangarlu A et al. Human magnetic resonance imaging at 8 T. NMR in Biomedicine 1998; 11: 263-265
- 2 Kangarlu A, Abduljalil AM, PM R. T1- and T2-weighted imaging at 8 Tesla. J Comput Assist Tomogr 1999; 23: 875-878
- 3 Kangarlu A, Abduljalil AM, Schwarzbauer C et al. Human rapid acquisition with relaxation enhancement imaging at 8 T without specific absorption rate violation. MAGMA 1999; 9: 81-84
- 4 Norris DG, Kangarlu A, Schwarzbauer C et al. MDEFT imaging of the human brain at 8 T. Magma 1999; 9: 92-96
- 5 Moser E, Stahlberg F, Ladd ME et al. 7-T MR—from research to clinical applications?. NMR in Biomedicine 2012; 25: 695-716
- 6 Barth MM, Smith MP, Pedrosa I et al. Body MR Imaging at 3.0 T: Understanding the Opportunities and Challenges. Radiographics 2007; 27: 1445-1462
- 7 Chang KJ, Kamel IR, Macura KJ et al. 3.0-T MR Imaging of the Abdomen: Comparison with 1.5 T1. Radiographics 2008; 28: 1983-1998
- 8 Kuhl CK, Träber F, Schild HH. Whole-Body High-Field-Strength (3.0-T) MR Imaging in Clinical Practice Part I. Technical Considerations and Clinical Applications1. Radiology 2008; 246: 675-696
- 9 Kollia K, Maderwald S, Putzki N et al. First Clinical Study on Ultra-High-Field MR Imaging in Patients with Multiple Sclerosis: Comparison of 1.5T and 7T. AJNR Am J Neuroradiol 2009; 4: 699-702
- 10 Moenninghoff C, Maderwald S, Theysohn JM et al. Evaluation of intracranial aneurysms with 7 T versus 1.5 T time-of-flight MR angiography – initial experience. Beurteilung von intrakraniellen Hirnarterienaneurysmen mit 7 Tesla versus 1,5 Tesla-Time-of-Flight-MR-Angiografie erste Erfahrungen. Fortschr Röntgenstr 2009; 181: 16-23
- 11 Moenninghoff C, Maderwald S, Theysohn J et al. Imaging of adult astrocytic brain tumours with 7 T MRI: preliminary results. European Radiology 20: 704-713
- 12 Moenninghoff C, Maderwald S, Theysohn JM et al. Imaging of Brain Metastases of Bronchial Carcinomas with 7T MRI “Initial Results”. Fortschr Röntgenstr 182: 764-772
- 13 Mönninghoff C, Maderwald S, Wanke I. Pre-Interventional Assessment of a Vertebrobasilar Aneurysm with 7 Tesla Time-of-Flight MR Angiography. Fortschr Röntgenstr 2009; 181: 266-268
- 14 Theysohn JM, Kraff O, Maderwald S et al. 7 tesla MRI of microbleeds and white matter lesions as seen in vascular dementia. Journal of Magnetic Resonance Imaging 33: 782-791
- 15 Bernstein MA, Huston JIII, Ward H. Imaging artifacts at 3.0T. Journal of Magnetic Resonance Imaging 2006; 24: 735-746
- 16 Boll DT, Merkle EM. Imaging at Higher Magnetic Fields: 3 T Versus 1.5 T. Magnetic resonance imaging clinics of North America 2010; 18: 549-564
- 17 Martin DR, Friel HT, Danrad R et al. Approach to abdominal imaging at 1.5 Tesla and optimization at 3 Tesla. Magn Reson Imaging Clin N Am 2005; 13: 241-254
- 18 Merkle EM, Dale MB, EK P. Abdominal MR Imaging at 3T. Magnetic resonance imaging clinics of North America 2006; 14: 17-26
- 19 Merkle EM, Dale BM. Abdominal MRI at 3.0 T: The Basics Revisited. Am J Roentgenol 2006; 186: 1524-1532
- 20 Elster AD. Eur Radiol. 1997; 7 (Suppl. 05) 276-280 Eur Radiol 1997; 21.
- 21 de Bazelaire CMJ, Duhamel GD, Rofsky NM et al. MR Imaging Relaxation Times of Abdominal and Pelvic Tissues Measured in Vivo at 3.0 T: Preliminary Results1. Radiology 2004; 230: 652-659
- 22 Ladd M. High-Field-Strength Magnetic Resonance: Potential and Limits. Topics in Magnetic Resonance Imaging 2007; 18: 139-152
- 23 Wolf S, Diehl D, Gebhardt M et al. SAR Simulations for High-Field MRI: How Much Detail, Effort, and Accuracy Is Needed?. Magnetic Resonance in Medicine 2012; DOI: DOI 10.1002/mrm.24329.
- 24 Umutlu L, Orzada S, Kinner S et al. Renal Imaging at 7 Tesla: Preliminary Results. European Radiology 2010; 21: 841-849
- 25 Umutlu L, Kraff O, Orzada S et al. Dynamic Contrast-Enhanced Renal MRI at 7 Tesla: Preliminary Results. Invest Radiol 2011; 46: 425-433
- 26 Kalender W, Quick H. Recent advances in medical physics. European Radiology 2011; 21: 501-504
- 27 Umutlu L, Bitz AK, Maderwald S et al. Contrast-enhanced ultra-high-field liver MRI: A feasibility trial. European Journal of Radiology 2012; 4: e625-e628
- 28 Umutlu L. Female pelvis MRI at 7T. Proceedings of the 17th Annual Meeting of ISMRM 2011;
- 29 Orzada S, Johst S, Maderwald S et al. Mitigation of B1+ inhomogeneity on single-channel transmit systems with TIAMO. Magnetic Resonance in Medicine 2012; DOI: doi: 10.1002/mrm.24453.
- 30 Orzada S, Maderwald S, Poser BA et al. RF excitation using time interleaved acquisition of modes (TIAMO) to address B1 inhomogeneity in high-field MRI. Magnetic Resonance in Medicine 64: 327-333
- 31 Maderwald S, Ladd S, Gizewski E et al. To TOF or not to TOF: strategies for non-contrast-enhanced intracranial MRA at 7 T. Magnetic Resonance Materials in Physics, Biology and Medicine 2008; 21: 159-167
- 32 Zwanenburg JJ, Hendrikse J, Takahara T et al. MR angiography of the cerebral perforating arteries with magnetization prepared anatomical reference at 7T: comparison with time-of-flight. Journal of Magnetic Resonance Imaging 2008; 28: 1519-1526
- 33 Grinstead JW, Rooney W, Laub G. The Origins of Bright Blood MPRAGE at 7 Tesla and a Simultaneous Method for T1 Imaging and Non-Contrast MRA. Proc Intl Soc Mag Reson Med 2010; 18: 1429
- 34 Willinek WA, Born M, Simon B et al. Time-of-Flight MR Angiography: Comparison of 3.0-T Imaging and 1.5-T Imaging–Initial Experience. Radiology 2003; 229: 913-920
- 35 Ty BaeK, Park S-H, Moon C-H et al. Dual-echo arteriovenography imaging with 7T MRI. Journal of Magnetic Resonance Imaging 2010; 31: 255-261
- 36 Heverhagen JT, Bourekas E, Sammet S et al. Time-of-flight magnetic resonance angiography at 7 Tesla. Invest Radiol 2008; 43: 568-573
- 37 Stamm AC, Wright CL, Knopp MV et al. Phase contrast and time-of-flight magnetic resonance angiography of the intracerebral arteries at 1.5, 3 and 7 T. Magnetic Resonance Imaging Epub ahead of print 2012 DOI: 10.1016.
- 38 Yacoub E, Shmuel A, Pfeuffer J et al. Imaging brain function in humans at 7 Tesla. Magn Reson Med 2001; 45: 588-594
- 39 van der Zwaag W, Marques JP, Kober T et al. Temporal SNR characteristics in segmented 3D-EPI at 7T. Magn Reson Med 2011; 67: 344-352
- 40 Fleysher L, Oesingmann N, Brown R et al. Noninvasive quantification of intracellular sodium in human brain using ultrahigh-field MRI. NMR Biomed 2012; DOI: doi: 10.1002/nbm.2813.
- 41 Madai VI, von Samson-Himmelstjerna FC, Bauer M et al. Ultrahigh-Field MRI in Human Ischemic Stroke – a 7 Tesla Study. PLoS ONE 2012; 7: e37631
- 42 Banerjee S, Krug R, Carballido-Gamio J et al. Rapid in vivo musculoskeletal MR with parallel imaging at 7T. Magnetic Resonance in Medicine 2008; 59: 655-660
- 43 Kraff O, Theysohn JM, Maderwald S et al. MRI of the Knee at 7.0 Tesla. MRT des Kniegelenks bei 7,0 Tesla 2007; 179: 1231-1235
- 44 Juras V, Welsch G, Bär P et al. Comparison of 3T and 7T MRI clinical sequences for ankle imaging. European Journal of Radiology 2012; 8: 1846-1850
- 45 Welsch G, Juras V, Szomolanyi P et al. Magnetic resonance imaging of the knee at 3 and 7 Tesla: a comparison using dedicated multi-channel coils and optimised 2D and 3D protocols. European Radiology 2012; 9: 1852-1859
- 46 Madelin G, Babb JS, Xia D et al. Reproducibility and repeatability of quantitative sodium magnetic resonance imaging in vivo in articular cartilage at 3 T and 7 T. Magnetic Resonance in Medicine 2012; 3: 841-849
- 47 Madelin G, Chang G, Otazo R et al. Compressed sensing sodium MRI of cartilage at 7T: Preliminary study. Journal of Magnetic Resonance 2012; 214: 360-365
- 48 Juras V, Zbýň Š, Pressl C et al. Sodium MR Imaging of Achilles Tendinopathy at 7 T: Preliminary Results. Radiology 2012; 262: 199-205
- 49 Bogner W, Chmelik M, Schmid AI et al. Assessment of 31P relaxation times in the human calf muscle: A comparison between 3 T and 7 T in vivo. Magnetic Resonance in Medicine 2009; 62: 574-582
- 50 Trattnig S, Zbýň Š, Schmitt B et al. Advanced MR methods at ultra-high field (7 Tesla) for clinical musculoskeletal applications. European Radiology 2012; Epub ahead of print.
- 51 Dieringer MA, Renz W, Lindel T et al. Design and application of a four-channel transmit/receive surface coil for functional cardiac imaging at 7T. Journal of Magnetic Resonance Imaging 2011; 33: 736-741
- 52 Hezel F, Thalhammer C, Waiczies S et al. High spatial resolution and temporally resolved t(2) (*) mapping of normal human myocardium at 7.0 tesla: an ultrahigh field magnetic resonance feasibility study. PLoS One 2012; 7: e52324 DOI: 10.1371. /journal.pone.0052324
- 53 von Knobelsdorff-Brenkenhoff F, Frauenrath T, Prothmann M et al. Cardiac chamber quantification using magnetic resonance imaging at 7 Tesla—a pilot study. European Radiology 2010; 20: 2844-2852
- 54 Snyder CJ, DelaBarre L, Metzger GJ et al. Initial results of cardiac imaging at 7 tesla. Magnetic Resonance in Medicine 2009; 61: 517-524
- 55 Suttie JJ, DelaBarre L, Pitcher A et al. 7 Tesla (T) human cardiovascular magnetic resonance imaging using FLASH and SSFP to assess cardiac function: validation against 1.5 T and 3 T. NMR in Biomedicine 2012; 25: 27-34
- 56 Winter L, Kellman P, Renz W et al. Comparison of three multichannel transmit/receive radiofrequency coil configurations for anatomic and functional cardiac MRI at 7.0T: implications for clinical imaging. European Radiology 2012; DOI: 10.1007/s00330-012-2487-1.
- 57 Bitz A, Brote I, Orzada S et al. Am 8-channel add-on RF shimming system for whole-body 7 Tesla MRI including real-time SAR monitoring. Proceedings of the 17th Annual Meeting of ISMRM, HI, USA 2009; (Abstract 4767)
- 58 Fischer A, Kraff O, Umutlu L et al. Ultra high-field imaging of the biliary tract at 7 Tesla: initial results of Primovist® enhanced MRCP. Proceedings of the 18th Annual Meeting of ISMRM 2012;
- 59 Umutlu L, Maderwald S, Kraff O et al. Dynamic Contrast-Enhanced Breast MRI at 7 Tesla Utilizing a Single-loop Coil: A Feasibility Trial. Academic Radiology 17: 1050-1056
- 60 Korteweg MA, Veldhuis WB, Visser F et al. Feasibility of 7 Tesla breast magnetic resonance imaging determination of intrinsic sensitivity and high-resolution magnetic resonance imaging, diffusion-weighted imaging, and (1)H-magnetic resonance spectroscopy of breast cancer patients receiving neoadjuvant therapy. Investigative Radiology 2011; 46: 370-376
- 61 Klomp DWJ, van de Bank BL, Raaijmakers A et al. 31P MRSI and 1H MRS at 7 T: initial results in human breast cancer. NMR in Biomedicine 2011; 24: 1337-1342
- 62 Wijnen JP, van der Kemp WJM, Luttje MP et al. Quantitative 31P magnetic resonance spectroscopy of the human breast at 7 T. Magnetic Resonance in Medicine 2012; 68: 339-348
- 63 Klomp DWJ, Bitz AK, Heerschap A et al. Proton spectroscopic imaging of the human prostate at 7 T. NMR in Biomedicine 2009; 22: 495-501
- 64 Ipek O, Raaijmakers AJ, Klomp DW et al. Characterization of transceive surface element designs for 7 tesla magnetic resonance imaging of the prostate: radiative antenna and microstrip. Phys Med Biol 2011; 57: 343-355
- 65 van den Bergen B, Klomp DWJ, Raaijmakers AJE et al. Uniform prostate imaging and spectroscopy at 7 T: comparison between a microstrip array and an endorectal coil. NMR in Biomedicine 2011; 24: 358-365
- 66 Lanzman RS, Kröpil P, Schmitt P et al. Nonenhanced Free-Breathing ECG-Gated Steady-State Free Precession 3D MR Angiography of the Renal Arteries: Comparison Between 1.5 T and 3 T. American Journal of Roentgenology 2010; 194: 794-798
- 67 Kraff O, Bitz AK, Breyer T et al. A Transmit/Receive Radiofrequency Array for Imaging the Carotid Arteries at 7 Tesla: Coil Design and First In Vivo Results. Investigative Radiology 2011 46: 246-254
- 68 van Elderen SGC, Versluis MJ, Webb AG et al. Initial results on in vivo human coronary MR angiography at 7 T. Magnetic Resonance in Medicine 2009; 62: 1379
- 69 Metzger GJ, Auerbach EJ, Akgun C et al. Dynamically applied B1+ shimming solutions for non-contrast enhanced renal angiography at 7.0 tesla. Magnetic Resonance in Medicine 2012; n/a-n/a
- 70 Umutlu L, Maderwald S, Kraff O et al. New look at renal vasculature: 7 tesla nonenhanced T1-weighted FLASH imaging. Journal of Magnetic Resonance Imaging 2012; 36: 714-721
- 71 Fischer A, Maderwald S, Orzada S et al. Nonenhanced magnetic resonance angiography of the lower extremity vessels at 7 tesla: Initial experience. Invest. Radiol 2013; [Epub ahead of print]
- 72 Umutlu L, Maderwald S, Kinner S et al. 7 Tesla Abdominal Vessel Imaging: Do We Really Need Gadolinium?. RSNA Radiology: S 293 2011