Klin Monbl Augenheilkd 2013; 230(11): 1097-1105
DOI: 10.1055/s-0033-1350786
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Anwendungsgebiete für die Optische Kohärenztomografie (OCT) in der Neuroophthalmologie

Applications of Optical Coherence Tomography (OCT) in Neuro-ophthalmology
C. Kernstock
1   Augenheilkunde, Universitätskliniken Tübingen
,
K. Friebe
2   Neurologie, Universitätskliniken Tübingen
,
F. Tonagel
1   Augenheilkunde, Universitätskliniken Tübingen
› Author Affiliations
Further Information

Publication History

eingereicht 11 July 2013

akzeptiert 18 July 2013

Publication Date:
24 September 2013 (online)

Zusammenfassung

Die optische Kohärenztomografie (OCT) hat die Augenheilkunde revolutioniert. Auch bei neuroophthalmologischen Krankheitsbildern gibt es dank moderner, hochauflösender Geräte immer mehr Anwendungsfälle. In dieser Übersichtsarbeit werden die im OCT feststellbaren Veränderungen und deren Relevanz für den klinischen Alltag bei folgenden Krankheitsbildern besprochen: autosomal dominante Optikusatrophie (adOA), Lebersche hereditäre Optikusneuropathie (LHON), toxische, traumatische und kompressive Optikusatrophie, Drusenpapillen, anteriore ischämische Optikusneuropathie (AION), Grubenpapillen, Stauungspapillen, Neuritis nervi optici (NNO) (isoliert, im Rahmen einer Multiplen Sklerose oder Neuromyelitis optica), neurodegenerativen Erkrankungen und Netzhautdystrophien. Oftmals ist eine Diagnose allein aufgrund der Veränderungen im OCT nicht möglich, jedoch finden sich bei einigen Krankheitsbildern pathognomonische Befunde, die klar auf eine bestimmte Genese hindeuten. Gerade bei den oft komplexen Sachverhalten in der Neuroophtalmologie ist das OCT – mehr noch als sonst – jedoch immer als zusätzliche Modalität und nicht als Ersatz anderer Untersuchungen zu sehen.

Abstract

Optical coherence tomography (OCT) has revolutionised ophthalmology. Due to modern instruments with extremely high resolution there are more and more applications also in neuro-ophthalmological disorders. This review gives an overview on typical changes in OCT for the following diseases: autosomal dominant optic atrophy, Leber hereditary optic neuropathy, toxic, traumatic and compressive optic neuropathy, optic nerve drusen, anterior ischaemic optic neuropathy, optic disc pit, papilledema, optic neuritis (isolated or associated with multiple sclerosis or neuromyelitis optica), neurodegenerative diseases and hereditary retinal diseases. A diagnosis exclusively based on an OCT examination is not always possible, but in several diseases there are pathognomonic changes that directly lead to the correct diagnosis. Particularly with the often complex settings in neuro-ophtalmology the OCT should be seen as a supplementary modality and not as a replacement for other techniques.

 
  • Literatur

  • 1 Savini G, Carbonelli M, Barboni P. Spectral-domain optical coherence tomography for the diagnosis and follow-up of glaucoma. Curr Opin Ophthalmol 2011; 22: 115-123
  • 2 Langenegger SJ, Funk J, Toteberg-Harms M. Reproducibility of retinal nerve fiber layer thickness measurements using the eye tracker and the retest function of Spectralis SD-OCT in glaucomatous and healthy control eyes. Invest Ophthalmol Vis Sci 2011; 52: 3338-3344
  • 3 Schuman JS, Hee MR, Arya AV et al. Optical coherence tomography: a new tool for glaucoma diagnosis. Curr Opin Ophthalmol 1995; 6: 89-95
  • 4 Hoffmann EM. [Optical coherence tomography (OCT) in glaucoma diagnostics]. Klin Monatsbl Augenheilkd 2012; 229: 135-142
  • 5 Mashima Y, Kimura I, Yamamoto Y et al. Optic disc excavation in the atrophic stage of Leberʼs hereditary optic neuropathy: comparison with normal tension glaucoma. Graefes Arch Clin Exp Ophthalmol 2003; 241: 75-80
  • 6 Gupta PK, Asrani S, Freedman SF et al. Differentiating glaucomatous from non-glaucomatous optic nerve cupping by optical coherence tomography. Open Neurol J 2011; 5: 1-7
  • 7 Chan CK, Miller NR. Peripapillary nerve fiber layer thickness measured by optical coherence tomography in patients with no light perception from long-standing nonglaucomatous optic neuropathies. J Neuroophthalmol 2007; 27: 176-179
  • 8 Contreras I, Noval S, Rebolleda G et al. Follow-up of nonarteritic anterior ischemic optic neuropathy with optical coherence tomography. Ophthalmology 2007; 114: 2338-2344
  • 9 Kernstock C, Dietzsch J, Januschowski K et al. Optical coherence tomography shows progressive local nerve fiber loss after disc hemorrhages in glaucoma patients. Graefes Arch Clin Exp Ophthalmol 2012; 250: 583-587
  • 10 Yu-Wai-Man P, Bailie M, Atawan A et al. Pattern of retinal ganglion cell loss in dominant optic atrophy due to OPA1 mutations. Eye (Lond) 2011; 25: 596-602
  • 11 Barboni P, Savini G, Feuer WJ et al. Retinal nerve fiber layer thickness variability in Leber hereditary optic neuropathy carriers. Eur J Ophthalmol 2012; 22: 985-991
  • 12 Lam BL, Feuer WJ, Abukhalil F et al. Leber hereditary optic neuropathy gene therapy clinical trial recruitment: year 1. Arch Ophthalmol 2010; 128: 1129-1135
  • 13 Barboni P, Savini G, Valentino ML et al. Retinal nerve fiber layer evaluation by optical coherence tomography in Leberʼs hereditary optic neuropathy. Ophthalmology 2005; 112: 120-126
  • 14 Costa-Cunha LV, Cunha LP, Malta RF et al. Comparison of Fourier-domain and time-domain optical coherence tomography in the detection of band atrophy of the optic nerve. Am J Ophthalmol 2009; 147: 56-63 (e52)
  • 15 Danesh-Meyer HV, Papchenko T, Savino PJ et al. In vivo retinal nerve fiber layer thickness measured by optical coherence tomography predicts visual recovery after surgery for parachiasmal tumors. Invest Ophthalmol Vis Sci 2008; 49: 1879-1885
  • 16 Danesh-Meyer HV, Carroll SC, Foroozan R et al. Relationship between retinal nerve fiber layer and visual field sensitivity as measured by optical coherence tomography in chiasmal compression. Invest Ophthalmol Vis Sci 2006; 47: 4827-4835
  • 17 Mehta JS, Plant GT. Optical coherence tomography (OCT) findings in congenital/long-standing homonymous hemianopia. Am J Ophthalmol 2005; 140: 727-729
  • 18 Guedes ME, Almeida AC, Patricio MS et al. Acquired retrograde transsynaptic degeneration. BMJ case reports 2011; Sep 28. [Epub]
  • 19 Oh J, Sotirchos ES, Saidha S et al. In vivo demonstration of homonymous hemimacular loss of retinal ganglion cells due to a thalamic lesion using optical coherence tomography. JAMA neurology 2013; 70: 410-411
  • 20 Zoumalan CI, Agarwal M, Sadun AA. Optical coherence tomography can measure axonal loss in patients with ethambutol-induced optic neuropathy. Graefes Arch Clin Exp Ophthalmol 2005; 243: 410-416
  • 21 Fujihara M, Kikuchi M, Kurimoto Y. Methanol-induced retinal toxicity patient examined by optical coherence tomography. Jpn J Ophthalmol 2006; 50: 239-241
  • 22 Kim U, Hwang JM. Early stage ethambutol optic neuropathy: retinal nerve fiber layer and optical coherence tomography. Eur J Ophthalmol 2009; 19: 466-469
  • 23 Moura FC, Monteiro ML. Evaluation of retinal nerve fiber layer thickness measurements using optical coherence tomography in patients with tobacco-alcohol-induced toxic optic neuropathy. Indian J Ophthalmol 2010; 58: 143-146
  • 24 Shi W, Wang HZ, Song WX et al. Axonal loss and blood flow disturbances in the natural course of indirect traumatic optic neuropathy. Chin Med J (Engl) 2013; 126: 1292-1297
  • 25 Roh S, Noecker RJ, Schuman JS et al. Effect of optic nerve head drusen on nerve fiber layer thickness. Ophthalmology 1998; 105: 878-885
  • 26 Noval S, Visa J, Contreras I. Visual field defects due to optic disk drusen in children. Graefes Arch Clin Exp Ophthalmol 2013; Jun 4 [Epub ahead of print]
  • 27 Sato T, Mrejen S, Spaide RF. Multimodal imaging of optic disc drusen. Am J Ophthalmol 2013; 156: 275-282 e1
  • 28 Johnson LN, Diehl ML, Hamm CW et al. Differentiating optic disc edema from optic nerve head drusen on optical coherence tomography. Arch Ophthalmol 2009; 127: 45-49
  • 29 Sarac O, Tasci YY, Gurdal C et al. Differentiation of optic disc edema from optic nerve head drusen with spectral-domain optical coherence tomography. J Neuroophthalmol 2012; 32: 207-211
  • 30 Danesh-Meyer HV, Savino PJ, Sergott RC. The prevalence of cupping in end-stage arteritic and nonarteritic anterior ischemic optic neuropathy. Ophthalmology 2001; 108: 593-598
  • 31 Chan CK, Cheng AC, Leung CK et al. Quantitative assessment of optic nerve head morphology and retinal nerve fibre layer in non-arteritic anterior ischaemic optic neuropathy with optical coherence tomography and confocal scanning laser ophthalmoloscopy. Br J Ophthalmol 2009; 93: 731-735
  • 32 Horowitz J, Fishelzon-Arev T, Rath EZ et al. Comparison of optic nerve head topography findings in eyes with non-arteritic anterior ischemic optic neuropathy and eyes with glaucoma. Graefes Arch Clin Exp Ophthalmol 2010; 248: 845-851
  • 33 Tzu JH, Flynn Jr. HW, Berrocal AM et al. Clinical manifestations of optic pit maculopathy as demonstrated by spectral domain optical coherence tomography. Clin Ophthalmol 2013; 7: 167-172
  • 34 Kaufhold F, Kadas EM, Schmidt C et al. Optic nerve head quantification in idiopathic intracranial hypertension by spectral domain OCT. PLoS One 2012; 7: e36965
  • 35 Yri HM, Wegener M, Sander B et al. Idiopathic intracranial hypertension is not benign: a long-term outcome study. J Neurol 2012; 259: 886-894
  • 36 Heidary G, Rizzo 3rd JF. Use of optical coherence tomography to evaluate papilledema and pseudopapilledema. Semin Ophthalmol 2010; 25: 198-205
  • 37 Noval S, Contreras I, Rebolleda G et al. Optical coherence tomography in optic neuritis. Ophthalmology 2007; 114: 200
  • 38 Fisher JB, Jacobs DA, Markowitz CE et al. Relation of visual function to retinal nerve fiber layer thickness in multiple sclerosis. Ophthalmology 2006; 113: 324-332
  • 39 Tian T, Zhu XH, Liu YH. Potential role of retina as a biomarker for progression of Parkinsonʼs disease. Int J Ophthalmol 2011; 4: 433-438
  • 40 Gelfand JM, Nolan R, Schwartz DM et al. Microcystic macular oedema in multiple sclerosis is associated with disease severity. Brain 2012; 135: 1786-1793
  • 41 Abegg M, Zinkernagel M, Wolf S. Microcystic macular degeneration from optic neuropathy. Brain 2012; 135: e225
  • 42 Balk LJ, Killestein J, Polman CH et al. Microcystic macular oedema confirmed, but not specific for multiple sclerosis. Brain 2012; 135: e226 (author reply e227)
  • 43 Barboni P, Carelli V, Savini G et al. Microcystic macular degeneration from optic neuropathy: not inflammatory, not trans-synaptic degeneration. Brain 2013; 136: e239
  • 44 Kesler A, Vakhapova V, Korczyn AD et al. Retinal thickness in patients with mild cognitive impairment and Alzheimerʼs disease. Clin Neurol Neurosurg 2011; 113: 523-526
  • 45 Fischer MD, Synofzik M, Kernstock C et al. Decreased retinal sensitivity and loss of retinal nerve fibers in multiple system atrophy. Graefes Arch Clin Exp Ophthalmol 2013; 251: 235-241
  • 46 Pula JH, Towle VL, Staszak VM et al. Retinal nerve fibre layer and macular thinning in spinocerebellar ataxia and cerebellar multisystem atrophy. Neuro-ophthalmology (Aeolus Press) 2011; 35: 108-114
  • 47 Fischer MD, Synofzik M, Heidlauf R et al. Retinal nerve fiber layer loss in multiple system atrophy. Mov Disord 2011; 26: 914-916
  • 48 Roth NM, Saidha S, Zimmermann H et al. Optical coherence tomography does not support optic nerve involvement in amyotrophic lateral sclerosis. Eur J Neurol 2013; 20: 1170-1176
  • 49 Palmowski-Wolfe A. Can the OCT replace functional tests such as the mfERG?. Invest Ophthalmol Vis Sci 2012; 53: 6129